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Preface

This volume collects the papers accepted for presentation at the 11th IMA
Conference on the Mathematics of Surfaces, held at Loughborough University,
5th–7th September 2005. As with all earlier conferences in the series, contribu-
tors to this volume come from many countries. The papers presented here reflect
the interest in a subject of relevance to mathematics, engineering, and computer
science, especially in domains such as computer-aided design, computer vision,
and computer graphics.

The papers in the present volume include eight invited papers, as well as
a larger number of submitted papers. They cover a range of ideas from un-
derlying theoretical tools to industrial and medical uses of surfaces. The latter
category includes such diverse topics as surfaces in car design, and modelling
of teeth, while the former includes papers on Voronoi diagrams, linear systems,
estimation of curvatures on meshes, operators on meshes, intersection of subdi-
vision surfaces, approximate parameterization, condition numbers, Pythagorean
hodographs, artifacts in B-spline surfaces, Bézier surfaces of minimal energy, line
subdivision, subdivision surfaces, level sets and symmetry, the topology of al-
gebraic surfaces, curve analysis, interpolation with positivity, and conversion of
cyclides to NURBS. Other papers concentrate on particular algorithms arising
from applications, such as embedding graphs in manifolds, recovery of 3D shape
from shading, finding optimal feedrates for machining, detection of creases in
range data, and filling holes in range data.

We would like to thank all those who attended the conference and helped to
make it a success. We are particularly grateful to Lucy Nye at the Institute of
Mathematics and Its Applications for her hard work in organizing many aspects
of the conference, and to Alfred Hofmann and Frank Holzwarth of Springer for
their help in publishing this volume. Following this Preface is a list of distin-
guished researchers who formed the International Programme Committee, and
who freely gave their time in helping to assess papers for these proceedings.
Due to their work, many of the papers have been considerably improved. Our
thanks go to all of them, and to other people who they called upon to help with
refereeing.

June 2005 Ralph Martin,
Helmut Bez,

Malcolm Sabin
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Free-Form Surface Construction in a
Commercial CAD/CAM System

Florian Albat and Rainer Müller

Tebis AG, Lademannbogen 128, D-22339 Hamburg, Germany
{Florian.Albat, Rainer.Mueller}@tebis.com

Abstract. In automobile industry, free-form surfaces often have to be
constructed and even more often have to be modified. Frequently, a sur-
face model is given as a triangular mesh, which is converted to (polyno-
mial) spline surfaces (reverse engineering). We show some arising prob-
lems and how they are solved in our software. Furthermore, we present
some open theoretical problems.

1 Surface Construction in CAD

There are two main types of surfaces in CAD: free-form surfaces and standard
surfaces. The latter describe spatial objects, that can be defined uniquely by
quite simple rules, often in terms of two-dimensional drawings. Typically, such
objects consist of planes, cylinders and similarly simple surfaces. The sharp edges
between the single surfaces are rounded by simulating a rolling ball (fillet sur-
faces). These models dominate in machine-building. The hood or roof of a car,
however, is shaped in such a way, that it cannot be defined by easy rules like
“cylinder of height 10cm with radius 3cm”. Such surfaces are called free-form
surfaces.

The automobile industry is not the only, but a very important field of in-
dustrial application for free-form surfaces. Many of our customers belong to this
industry, both the car companies themselves and many suppliers of different
kind. It is the main application field for surfaces of the highest quality require-
ments (‘Class A’, this implies e.g. curvature continuity). They are needed for the
visible outer skin, that determines the potential buyer’s impression of a car. But
these high-quality surfaces represent only a minority of all constructed surfaces
in a car, most of which lie invisible in the inside like the one shown in Fig. 1 and
do not need to be of such a high quality. However, even such surfaces need to
be G1 continuous (within a tolerance of about 0.5◦), because they will finally be
produced as sheet metals, and sheet metals cannot be shaped into sharp edges.

Besides sheet metals a car contains metal parts like the crank shaft, exhaust
pipe and clutch shell plus plastic parts like the dashboard, which are molded.
For all these parts CAD models must be constructed.

New objects account for only about 10% of construction work, roughly 90%
of all constructions are modifications of existing models. So we will focus on
such modifications. One reason for them is, that first versions of the fabrication

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 F. Albat and R. Müller

Fig. 1. Technical sheet metal from the inside of a car (scanned data)

tools are milled before the final design with all details is done. Another frequent
reason is the compensation of a metal’s springback.

Modifications can be either real or virtual. As real modifications we denote
such, that are based on a really existing object. For example, the outer skin
of a car is usually milled as a prototype, and the shape of this real model is
modified by sanding off and spreading of material to satisfy certain aesthetic
visions. This modified model is scanned, the scan points are triangulated and
from this triangular mesh a new CAD model consisting of spline surfaces is
constructed (reverse engineering). Virtual modifications we call such, that are
performed directly on the CAD model without any real object being modified
and scanned. A typical requirement is to raise a certain position of the roof for
1 cm. To do this, mostly neighbouring surfaces need to be adapted.

We will treat virtual modifications in the third section. Beforehand, we will
elaborately treat real modifications, i.e. free-form surface construction by re-
verse engineering based on a triangular mesh. The question arises whether it is
at all necessary to convert the mesh of scanned data into polynomial surfaces,
or whether suitable new algorithms make it possible to work with meshes just
as effectively. This question is interesting from a theoretical standpoint and not
easily answered. However, it is (for the time being) irrelevant from a practical
point of view, since industrial process chains are designed for work with ‘smooth’
surfaces. Changing to a continuous technique using meshes will not be possible
until not only solutions for single steps exist, but really all design and produc-
tion processes can be converted without suffering a loss in quality. Even then,
the change will be done only when the savings gained outweigh the high cost of
conversion. As a result, at least for the present and in the foreseeable future, it
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will be unavoidable in industrial applications to convert mesh data into poly-
nomial surfaces. Hence, there is a need for easily useable software to do reverse
engineering.

Among others, this paper shall also show, that our point of view as a provider
of commercial software differs in some points from that of more theoretically in-
terested scientists. We have to sell the used algorithms in such a way, that our
customers, of whom hardly any has studied mathematics or computer science,
can use them as easily as possible. Some of the discussed points may be triv-
ial for academically educated readers, but these are questions, which must be
considered if one wants to have success in the market.

This paper does not want to give an overview of the vast literature about
possible algorithms or similar, but is aimed to inform about practical experiences
of different software users, which is not written in common scientific papers.
Hence, we restrict our list of references to [1], which is a good short introduction
to reverse engineering. More references can be found therein.

2 Surface Construction with Reverse Engineering

2.1 Structuring the Object

Fig. 2 shows a triangular mesh of the front part of a car. Because of the symmetry,
it suffices to construct the left half of the car. A surface construction of this model
is shown in Fig. 3. This model looks good, matches the mesh very well and is G1

continuous, which are very important properties of a surface model from reverse
engineering. This model was constructed with our software package RSC (Rapid
Surface Creation).

In Fig. 3 the border lines of the single surfaces are drawn. We denote their
entirety as wire frame. Many curves follow the object’s feature lines, each of
which separates different ‘uniform’ areas, e.g. the relatively flat part of the hood
from the more curved fillet. As we will delve into later, it is very important for
the quality of the approximation surfaces, that the feature lines can be found in
the wire frame. In a classical construction without mesh, the feature lines are
naturally incorporated in the process: the larger uniform surfaces, the so called
main surfaces, are constructed first. Then they are intersected with each other,
and the sharp edges are rounded by fillets. The border lines of fillets are feature
lines.

When constructing the fillets, the main surfaces are trimmed by the fillet
boundaries. Likewise, the wire frame in Fig. 3, which originated from reverse
engineering, contains many trimmed surfaces, i.e. surfaces, whose border is not
a quadrangle of isoparametric lines. This is the normal case, one can hardly
find CAD constructions, which do not contain trimmed surfaces. Exceptions are
constructions, that are made by some reverse engineering programs, who cannot
handle trimmed surfaces, but only natural surfaces, i.e. quadrangular surfaces,
whose boundaries are isoparametric lines. Of course, every wire frame can be
subdivided into quadrangles, but such a face layout is not suitable for some
subsequent process steps. As an example, fig. 4 shows on the left a part of the
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Fig. 2. Triangular mesh of a car

Fig. 3. Surface construction from the mesh in Fig. 2
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Fig. 4. Part of the wire frame from Fig. 3(left) and example for quadrangulation (right)

wire frame from fig. 3 and on the right a subdivision of this wire frame, so that
it does only contain quadrangles.

The most obvious disadvantage of quadrangulation is the ‘unnaturalness’:
the human user is disturbed by the many additional border lines. Another dis-
advantage is, that it is difficult to enlarge a main surface, when it was divided
into several quadrangles. Such an enlargement is e.g. necessary, when a neigh-
bouring approximated fillet surface has to be replaced by an exact fillet surface
with bigger or smaller radius (reduction of radius).

Especially for the visible surfaces of a car (roof etc.) a surface calculated
automatically by approximation of digitized data is hardly ever good enough for
the high quality standards. Here is always manual postprocessing necessary, e.g.
by manipulation of Bézier points. For that, a subdivision of the surfaces into
quadrangles is completely unsuitable, one needs a face layout like in Fig. 3.

The designer’s great dream is of course an algorithm, that is given the mesh
and creates a wire frame like that in Fig. 3. We are working on this and are
optimistic, that there will be considerable progress soon, but until now, such an
algorithm does not exist. As a surface model implies a wire frame, no automatic
procedure exists, that constructs a surface model like the one shown directly from
the mesh. Sure, there are commercial programs for this task, but the programs
known to us can only handle quadrangles and therefore have the mentioned
disadvantages.
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Fig. 5. Curvature representation of the mesh in Fig. 2

Until now, no program can create a wire frame nearly as well as the human
designer, so the most reliable method, which is also implemented in our software,
is to let the user construct the wire frame by himself. In general, it is difficult
to construct spatial free-form curves, but in this application, it is much easier,
as the curves are not absolutely free, but must lie on the mesh. By projecting
the input automatically, our software enables the user to create curves directly
on the mesh. This has proven to be both intuitive and reliable.

As support, we offer half-automatic functions for construction of feature lines,
which e.g. recognize pair of fillet border curves or curves with constant (approx-
imated) mesh curvature on positions selected by the user. For visualization of
the object’s structure it has proven useful to approximate the mesh’s curvature
and show it as a color spectrum, see Fig. 5.

2.2 Calculation of Surfaces

By construction of the wire frame the user decomposes the mesh into several
facets, in which then surfaces can be calculated.

The surface, which is calculated for a facet, depends on the mesh and the
facet’s boundary curves, that define the approximated region. To achieve G1

continuity, it also depends on surfaces in adjacent facets, if such exist. Letting
the user specify all these parameters explicitly, is not only cumbersome, but
also prone to error. A user-friendly program should ease this as far as possi-
ble. To do so, we use in our software a data structure ‘RSC manifold’, which
contains besides geometric data also topological data, namely neighbourhood
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Fig. 6. Representation of a facet in form of stings

information. During the construction of the wire frame, for every new curve is
checked, whether it is connected to a existing curve, and if so, how the curves
are sorted around their common endpoint. From this is known later on, which
curves together bound a facet, so that the user can work directly with facets.
When he selects a facet, all aforementioned parameters are known to the pro-
gram. To make a facet, in which no surface has been calculated yet, selectable in
the graphic user interface, we draw around the facet’s boundary stings towards
the inner region (see Fig. 6). To perform a surface calculation, the user simply
chooses an appropriate function and selects one or more facets.

There are different methods to calculate an approximation surface in a facet,
which result in different types of surfaces. ‘Classical’ methods of reverse engineer-
ing are the calculation of optimally fitting planes, cylinders, cones or spheres,
which we also offer. Here, we are particularly interested in free-form surfaces. As
we have seen above, they can be divided into trimmed and natural surfaces.

Natural surfaces are relative simple, and their great advantage is, that they
can be relatively easy connected G1 continuous to their neighbouring surfaces.
Connecting a trimmed surface to neighbours, is considerably more difficult (if the
trim curve is not an isoparametic line). Hence, we renounce to match trimmed
surfaces G1 continuous, but if adjacent natural surfaces exist, we adapt them to
a newly calculated trimmed surface. We do not allow two trimmed surfaces to be
adjacent to each other. This is a restriction for the user, but as it is conform to
the standard construction process, this restriction is mostly accepted as natural
and not very objectionable.

Important for approximation with trimmed surfaces is the surface’s shape
outside the trimmed region, where no data points are available to approximate.
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Fig. 7. Trimmed approximating surface with extrapolating region

Some approximation techniques result in surfaces with strong oscillations in
this extrapolating region. Such surfaces are unsuitable, if one is interested in
enlargement of a main surface or radius reduction (see above). An example for
good shape in the extrapolating region is shown in Fig. 7 from the hood of the
car in Fig. 3. The brighter closed curves are the facet’s boundary, outside of
which the rest of the calculated surface is shown. To illustrate the surface, a
grid of isoparametric lines is drawn. One can see, that the surface looks smooth
everywhere, not only in the approximated area. In the front on the right one can
see, that the surface is slightly bent downwards, but this is absolutely acceptable.

The wire frame has great influence on the quality of the approximation sur-
faces. As an example, Fig. 8 shows the same part of two different surface models
of a mesh. The wire frame of the upper model was simply created by projection
of a regular grid, which is the fastest method to construct a wire frame. The
wire frame of the lower model is based on the mesh’s feature lines. The increase
of quality is obvious.

2.3 Interactive Modifications of a Surface Model

When calculating surfaces, it sometimes turns out, that the surface quality is not
as good as expected, because the wire frame is not good enough in this region.
Then functions for interactive modeling are useful, so that the user does not
have to construct the curves completely new, but can e.g. modify a single curve
or move a common endpoint across the mesh. The internal knowledge of neigh-
bourhood information is needed, so that common endpoints remain common and
surfaces in the affected facets can be recalculated automatically.

Especially useful is the interactive remodeling of the wire frame, when an
earlier CAD model is at hand, whose curves can mainly be used. This is often
the case, as many of the frequent changes in the model are only local and do
not change the global structure. Then no complete wire frame needs to be con-
structed, but the user must only modify the regions, where the previous model
does no longer match the changed real object.

The sheet metals of a car are produced by letting a stamp like that in fig. 9
press a flat sheet metal into a matching counterpart (essentially a offset surface
of the stamp). Unfortunately, the sheet metal does not exactly remain in the
stamp’s shape, but it springs a little back towards its former planar shape.
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Fig. 8. Surface models with different wire frames
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Fig. 9. Stamp for production of sheet metals

Therefore, the stamp must not have the shape, which the metal is supposed to
get, but it must be shaped in such a way, that the metal after springing back has
the desired shape. This compensation of springing back, known as bending, is a
big challenge in CAD, which is still not completely solved. It can be simulated
more or less well, and then it can be seen as a modification of the desired surface
model. When the bending is simulated by finite elements, one gets the necessary
stamp form as a FEM model, i.e. as an triangular mesh. For further treatment,
it is not important, whether the mesh originated from scanned data or from a
FEM model.

3 Virtual Modifications

Many modifications, until a car design is finished, originate from technical re-
quirements, for which e.g. the middle part of the roof must be raised by one
centimeter. Of course, the look of the car shall be changed as little as possible,
so the roof must be deformed uniformly. The neighboring parts (door, pillar, . . . )
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must be modified accordingly. One reason for the modification can be, that the
assembling of test metals has shown large gaps.

For a real modification, the model-maker raises the roof by spreading clay or
some other material, and he achieves a ‘uniform deformation’ by not spreading a
single lump at the reference position but a whole layer on the roof and perhaps
the sideways parts, which becomes thinner towards its boundary. For a virtual
modification, this must somehow be simulated. It must be defined, how far the
layer of clay reaches, i.e. what is the domain of the deformation, and how the
layer becomes thinner towards the boundary.

Up to now, we do only offer first approaches for such problems, which are
nevertheless very useful, according to our customer’s feedback. We will treat this
much more elaborately in the future. Questions are not only, how the surfaces
are calculated, but also how the user is enabled to specify his requests as easy
as possible to the software.

4 Open Problems

4.1 Recognition of Structure

The user’s substantial work in reverse engineering is the definition of the face
layout, which in our software is done by the construction of the wire frame.
Hence, here is the biggest potential to reduce the amount of work. The aim is
an algorithm, that reliably produces curves, as they can be seen in fig. 3. During
the preparation of this paper, we have made considerable progress in this area,
and we hope to present this soon.

4.2 Modeling of Curvature

An extremely time-consuming part in the automobile construction process is
the ‘polishing’ of a car’s visible surfaces to meet highest aethetic criteria (‘Class
A surfaces’). This is done by interactive modeling of Bézier points with special
respect to the surface’s curvature. While the connection between the motion
of a control point and the change of the surface’s shape is quite intuitively
predictable, the effect on the curvature in contrast is only hard to comprehend.
The results of this technique are often not as good as desired.

Hence, we are looking for possibilities to let the user manipulate the curvature
as intuitively as possible. Besides something like ‘curvature Bézier points’ it
would also be helpful, if one could impose constraints to a surface like that the
curvature of isoparametric lines has to be monotonic or have no zeros.

A special case for curvature constraints is the construction of special blend
surfaces, which in opposite to the standard rolling ball fillet are connected G2

continuous to the blended surfaces and whose lateral isoparametric lines shall
have exactly one maximum of curvature, where the curvature shall furthermore
have a prescribed value.
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4.3 Surface Fairing

The abovementioned demands on a surface’s curvature have to be specified ex-
plicitly by the designer. But of course, the surfaces, which are calculated without
special effort to modeling or configuration shall also look as good as possible.
Improvement of surface quality is generally denoted as surface fairing. The ques-
tion in the beginning is: when is a surface ‘fair’? The most common and most
easy to manage approach is to define fairness by a functional of the surface’s
coefficients. Then, the approximating surface does not minimize a pure sum of
squared distances but a weighted sum of squared distances and the fairing func-
tional. If the fairing functional is quadratic, the calculation of the optimal surface
requires only the solution of a linear equation system, exactly like the pure ap-
proximation without fairing. Many fairing functionals have been proposed, and
it is not clear, which is the most suitable.

For extrapolation of a trimmed surface, it must be fair not only in the ap-
proximated area, but also in the outside. This cannot be guaranteed with the
approach of fairing functionals, at least not with the functionals we have tested.
So we needed to use a different fairing technique, which has certain disadvantages
and is surely not optimal.

4.4 G1 Continuity

Connecting two natural surfaces G1 continuous along a common boundary, is rel-
atively easy. Connecting a natural surface to a trimmed surface is more difficult,
but feasible within the tolerance needed for our applications, which is less than
0.005 mm distance and less than 0.5◦ angle. Connecting two trimmed surfaces
to each other, when the common boundary is for neither of them an isopara-
metric line, is much more difficult. One possibility is to provide a high number
of degrees of freedom by increasing the number of segments, but high segment
numbers have to be avoided especially for the trimmed main surfaces. As we do
not know a satisfactory method, we impose the abovementioned demand, that
the designer is not allowed to construct two adjacent trimmed surfaces. This is
not a strong restriction, but of course it would be better, if we could abstain
from it.

We want to emphasize, that G1 continuity is important, not C1 continuity.
The latter is relatively restrictive and hardly realizable for trimmed surfaces.

5 Conclusion

Important for free-form surface construction by reverse engineering or by free
construction and modification is:

– use of spline surfaces,
– structuring of the object,
– use of trimmed surfaces and
– use of neighbourhood information.
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Our approach for reverse engineering is letting the designer construct a wire
frame, whose facets can be approximated by different types of surfaces (trimmed
surfaces, natural surfaces with G1 continuous connection, planes, . . . ). For the
ease of handling we use automatic recognition and use of topological information.

Our software is successfully sold and used, but of course it is not so perfect,
that we do not want to improve it. Many points are rather technical details, but
some points are of general, also theoretical interest. For our purposes, the most
important of them are:

– Modeling of a surface’s curvature,
– recognition of feature lines on a triangular mesh.

We hope to stimulate the interest of scientists, who are interested in a real
practical application of their results.
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Abstract. We design a set of algorithms to construct and visualise un-
ambiguous Gauss maps for a large class of triangulated polyhedral sur-
faces, including surfaces of non-convex objects and even non-manifold
surfaces. The resulting Gauss map describes the surface by distinguishing
its domains of positive and negative curvature, referred to as curvature
domains. These domains are often only implicitly present in a polyhedral
surface and cannot be revealed by means of the angle deficit. We call the
collection of curvature domains of a surface the Gauss map signature.
Using the concept of the Gauss map signature, we highlight why the
angle deficit is sufficient neither to estimate the Gaussian curvature of
the underlying smooth surface nor to capture the curvature information
of a polyhedral surface. The Gauss map signature provides shape recog-
nition and curvature characterisation of a triangle mesh and can be used
further for optimising the mesh or for developing subdivision schemes.

1 Introduction

In many applications a physical object is represented by discrete data, obtained
by some measurement system. A polyhedral model (i.e. a triangular mesh, a
piecewise linear surface) is an easily obtainable preliminary sketch of the given
object. Triangular or polygonal meshes are commonly used in modern computer-
related applications to represent surfaces in three-dimensional space. Therefore,
there is a substantial need for accurate estimates of geometric attributes that
are directly computed from a mesh, such as surface area, normal vectors, and
curvatures. In recent years significant efforts have been made to define the ana-
logues of differential geometry concepts on meshes that imitate those of a smooth
surface [1, 5, 8, 13, 14]. Among those concepts surface curvatures are particularly
important, as they are basic measures to describe the local shape of a smooth
surface. However, the surface of a triangle mesh is not smooth, and there is still
no consensus about the most appropriate way of estimating such geometric quan-
tities as curvatures. On the other hand, methods are being developed to capture
curvature information without referring to higher-order formulas of differential
geometry. These methods are based on the discrete curvature concepts and are
of growing interest for geometric modelling [13, 2, 8, 14]. Discrete curvatures can
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be computed directly on triangle meshes. The principal difference between a
polyhedral and a smooth surface is that the discrete curvatures in a polyhedral
surface are concentrated around the vertices and along the edges. If we think of
the surface of a triangle mesh as an approximation of a smooth surface, then,
informally speaking, curvatures in the domain of the underlying smooth surface
are ‘glued’ together in the corresponding domain of the triangle mesh.

Therefore, measures of curvature in a piecewise linear setting should be ana-
logues of integral formulae for curvature in a ‘smooth’ setting and should pre-
serve integral relations for curvature, such as the Gauss-Bonnet theorem [6, 3].
Such analogues exist and were introduced long ago in relation to the theory of
non-regular surfaces (see an overview in [1]). These analogues were discussed
in detail in [6], where the authors also compare discrete curvatures with their
smooth counterparts.

In the last five or six years the number of papers that explore discrete cur-
vatures in one or another context has increased significantly. Much attention is
paid to the discrete Gaussian curvature, known also as the angle deficit. It has
also been referred to as angular defect. The concept was brought to the atten-
tion of the geometric modelling community in 1984 [7], where the author listed
several applications of the angle deficit in surface modelling, mostly in the the
context of the mechanics of thin-shell structures. Nowadays, the angle deficit
is used to evaluate curvature information directly from a mesh, as well as to
estimate the Gauss curvature and derive principal curvatures of the underlying
smooth surface, assuming that the mesh samples the surface in a certain way
[15, 14]. In [5] the problem of the correct estimation of the Gauss curvature is
investigated in detail, and they argue, on the basis of several approximation
results, that approaches based on the use of normalized angular deficits are of-
ten erroneous, and can be applied correctly only if the geometry of meshes is
precisely controlled. We agree with them, and in this paper we highlight why
the angular deficit is sufficient neither to estimate the Gaussian curvature of
the underlying smooth surface nor to capture the curvature information of a
polyhedral surface. Loosely speaking, the reason is that there are more curva-
tures for polyhedral surfaces than for smooth ones [6, 1, 2]. This fact is still not
fully acknowledged, but without addressing it, it is impossible to develop correct
curvature estimates.

Besides the need to derive correct curvature estimates directly from polyg-
onal meshes, there is also a need for visualisation of the geometry of an object
in order to explore complex shapes and emphasize hidden details. We propose
an approach that addresses both needs, and that enables us to correctly and
consistently describe and visualise complex 3D shapes based on curvature prop-
erties. In the smooth case, the Gauss map and related shape operator completely
determine the shape of the original surface S [10]. Therefore, efforts have been
made to use analogues of the Gauss map to explore shape characteristics of a
complex polyhedral surfaces. For example, an analogue such as the extended
Gaussian image is used in Computer Graphics and Vision to compare objects
and to illuminate the structure of surface shape [11, 12]. However, the extended
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Gaussian image and its generalisations construct only normals to the faces of
the polyhedral surface without indicating their connectivity. There exist few at-
tempts to create the Gauss map directly from the mesh, but the results are still
scarce and ambiguous for non-convex objects [12]. In [1, 13, 9] some theoretical
considerations regarding Gauss maps for triangulations are given, but only very
schematically, and no algorithm has yet been presented.

Our method constructs a polyhedral analogue of the Gauss map directly from
a polygonal mesh and uses this map to characterise surface shape. We believe
that such an algorithm is developed here for the first time. We also give a def-
inition of the polyhedral Gauss map and show its conformity with the smooth
case. Our approach enables us to construct unambiguous Gauss maps for poly-
hedral surfaces of complex shape, of various genera, self-intersecting and even
non-manifold surfaces. The algorithm is relatively straightforward for simple
embedded vertices, but a sound computation of more complex vertices requires
thorough analysis of the geometry of a vertex as well as ingenious computational
techniques. Nevertheless, construction of the Gauss map of a polyhedral surface
is a computationally low-cost method, as all operations are linear. The result-
ing Gauss map provides a description of the surface by determining its domains
with respect to incorporated curvatures. These domains are often only implic-
itly present in a polyhedral surface, and cannot be determined by the sign of the
angle deficit only. Each domain can be split up into uniquely determined sub-
domains; therefore each surface can be associated with the collection of these
sub-domains, denoted as the Gauss map signature, abbreviated as GMS. The
GMS method besides shape recognition and description can be used for opti-
misation of the underlying model or for developing subdivision schemes. The
method provides also a better insight into the geometric structure of complex
triangle meshes, by describing various vertex types, some of them with a very
complex GMS. A good understanding of the geometry of meshes is a step to-
wards more robust mesh manipulation algorithms. Finally, the proposed GMS
is computationally inexpensive, can be viewed dynamically, and is effective in
visualising curvature features of complex polyhedral surfaces.

In the rest of the paper, Section 2 recalls the necessary background on poly-
hedral and global differential geometry regarding curvatures. Section 3 defines
the polyhedral Gauss map, lists some of its properties and describes the algo-
rithm to construct it. Section 4 presents Gauss map visualisations of various
single vertices and complex polyhedral surfaces. Section 5 concludes the paper.

2 Basic Concepts and Definitions

2.1 Polyhedral Surfaces

By a polyhedral surface we understand a triangulated polyhedral surface. Desig-
nating V as a finite point set in three-dimensional space, V = {Vi, i = 1, . . . , n},
we denote by P(V) a polyhedral surface with the vertex set V. The term poly-
hedron refers to a closed polyhedral surface. In such a setting a polyhedron is
bounded, but might be non-simple, i.e. non-homeomorphic to a sphere. Also it
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Fig. 1. Gauss map of a smooth surface

might be multi-connected and self-intersecting, and its interior volume is not
necessarily part of the polyhedron. Therefore, a polyhedron is not necessarily a
solid body. Given a polyhedron P(V), the set of its vertices is denoted by V ,
the edges by E, and the faces by F .

Definition 1. The star Str(ν) of a vertex ν is the union of all the faces and
edges that contain the vertex, and the link Lnk(ν) of the star (the boundary of
the star) is the union of all those edges of the faces of the star Str(ν) that are
not incident to ν.

A surface of a triangle mesh is an example of a polyhedral surface. Therefore,
all properties of a polyhedral surface discussed below are applicable to a mesh.

2.2 Integral Curvature Relations: Smooth Towards Discrete

In this paper we are interested only in discrete curvatures related to the integral
Gaussian curvature, i.e. those that are supported on the vertices. In what follows
we give a brief comparative analysis between the known integral relations for
curvature for smooth surfaces and their discrete counterparts.

Integral Gaussian Curvature and the Angle Deficit. For a domain U of
smooth surface S the Gauss map N(U) is the map assigning to each point p ∈ U
the point on the unit 2-sphere S2 ∈ R3, by ‘translating’ the unit normal vector
N(p) to the origin [10]. The end-points of normals, therefore, will cover a certain
region on S2 (see Figure 1).

Given a neighbourhood U(p) on S, the ratio of the area N(U(p)) to the area
of U(p) can be considered as a measure of the amount of curvature of the surface
S near the point p. Then the Gaussian curvature K(p) is defined by setting

|K(p)| = lim
U(p)↓p

Area(N(U(p)))
Area(U(p))

(1)

where the limit is taken as the neighbourhood U(p) contracts down to the point p.
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If a neigbourhood U(p) is sufficiently small such that the map N(U(p)) is
one-to-one and orientation-preserving (outward normals at corresponding points
on S and S2 correspond), then the area N(U(p)) is considered positive, and the
corresponding region U(p) is said to be strictly convex and K(p) > 0. If the
map N(U(p)) is one-to-one but orientation reversing, then the area N(U(p)) is
considered to be negative, p is a saddle point and K(p) < 0. Of course, different
regions of S can be mapped to the same region on the unit sphere, which results
in multiplicities of the Gauss map.

Therefore for a region U(p), for which the map N(U(p)) might not be one-to-
one, under the integral Gaussian curvature one understands the algebraic area
of the image U(p) under the Gauss mapping:

Kint =
∫

U

KdA. (2)

For an entire closed smooth surface the previous formula turns into the math-
ematical expression of the Gauss-Bonnet theorem:∫

S

KdA = 2πχ(S), (3)

where χ(S) is the Euler characteristic of S. The discrete analogue of the expres-
sion 2 is known as the angle deficit, and it measures curvature ω around vertex ν:

ω = 2π − θ, (4)

where θ =
∑

αi is the total angle around vertex ν, and αi are those angles of
the faces in the Str(ν) that are incident to ν. This is a polygonal analogue of
the Gauss-Bonnet theorem [3]. We refer to ω as the discrete Gaussian curvature.
For any point x ∈ P(V), except vertices, ω is identically equal to zero. For a
domain U ⊆ P(V) the total curvature ΩU is determined as

ΩU =
∑
ν∈U

ων . (5)

For an oriented closed polyhedral surface P(V) of genus g the total curvature
ΩP (V ) is equal to (1 − g)4π, so the analogue of the integral relation for the
Gaussian curvature is preserved [1, 4, 16].

Integral Absolute Curvature and its Discrete Analogue. The following
measure which we determine is an analogue of the integral absolute curvature
for a polyhedral domain. The most obvious candidate for this measure seems
to be the sum of absolute values of the angle deficits around the vertices in the
domain.

However, in Figure 2 we can see that in both polyhedra all curvatures ωνi

are positive. In the depicted polyhedra they are actually equal for every corre-
sponding vertex, i.e. ∀ i ωνi∈P1 = ωνi∈P2 . Therefore, we have:
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Fig. 2. Two polyhedra

Ω(P1) = Ω(P2) =
∑
ν∈P1

|ων | =
∑
ν∈P2

|ων | = 4π. (6)

The left polyhedron is non-convex, but the above equation does not reflect this
fact. For a closed non-convex smooth surface S the total absolute curvature
Kabs =

∫
S
|K|dA is greater than 4π; therefore,

∑
ν∈P |ων | is not an appropriate

analogue of Kabs. The problem is that the curvature ω around a vertex may
consist of positive and negative ‘parts’ that are ‘glued’ together; and the task
is to separate them. If vertex ν belongs to the boundary of the convex hull of
its star (i.e. the convex hull of ν and all vertices in its star), then we can single
out another star Str+(ν) with ν as the vertex and those edges of Str(ν) that
belong to the boundary of the convex hull. The edges of Str+(ν) will determine
the faces of Str+(ν). We refer to Str+(ν) as the convex cone of vertex ν. Then
the positive (extrinsic) curvature ω+ is defined as

ω+ = 2π − θ+ (7)

where θ+ is the total angle around ν in Str+(ν). The positive curvature ω+ is
equal to zero, if the vertex ν and all the vertices in Lnk(ν) lie in the same plane.
If the convex cone around ν doesn’t exist, i.e. ν lies inside the convex hull of
Str(ν), then ω+ is, by definition, equal to zero.

This definition of ω+ is also in conformity with the smooth case. Indeed,
suppose that SUPU (N) is the number of local supporting planes to the region
U of a surface S, then the integral positive curvature

∫
U

K+dA can be defined
as the integral

∫
SUPU (N)dσN taken over the unit 2-sphere S2 ∈ R3.

The negative (extrinsic) curvature ω− of ω is determined as

ω− = ω+ − ω (8)

The absolute (extrinsic) curvature ωabs is defined as

ωabs = ω+ + ω− (9)
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(i) (ii) (iii) (iv)

Fig. 3. Examples of vertices: convex (i), saddle (ii), and mixed (iii) with its convex

cone (iv)

Three basic types of vertices for an embedded polyhedral surface are then distin-
guished ([6, 1]): convex (ω+ =ω), saddle (ω−=−ω) and mixed (ω+ > 0, ω+ �= ω)
(see Figure 3).

The total absolute extrinsic curvature Ωabs is defined then as the sum of
absolute extrinsic curvatures of all the vertices of a polyhedral surface P :

Ωabs =
∑

i

ωabs(νi) =
∑[

ω+(νi) + ω−(νi)
]

(10)

The word ‘extrinsic’ in the introduced curvatures is due to the fact that they
reflect how a vertex is embedded in space, while the angle deficit, computed
only by using the angles around a vertex remains an intrinsic measure. The
total absolute extrinsic curvature Ωabs takes different values on the polyhedra
that are depicted in Figure 2. It is equal to 4π on the right polyhedron, as it
represents a convex body, and is greater than 4π on the left polyhedron, which
is not convex. Therefore, the total absolute extrinsic curvature of a polyhedral
surface is an adequate analogue of total absolute curvature of a smooth surface.

Remark 1. The curvature measures can also be expressed in terms of the num-
ber of critical points. Details can be found in [3, 6, 1].

3 The Polyhedral Gauss Map and Its Construction

Separation of the positive and negative parts of the curvature for a mixed vertex
can also be carried out using an analogue of the Gauss map for a polyhedral
surface, which we call the polyhedral Gauss map. For a polyhedral surface cur-
vatures are concentrated around vertices, so we need to be able to construct the
Gauss map for a vertex, and the union of the Gauss maps for all vertices is the
Gauss map of a polyhedral surface. Assuming that the surface is oriented, we
can construct an outward unit normal to any point of a face except at vertices
and edges, and all these normals are parallel to each other. By translating them
to the same origin, we get a unique unit vector. Applying the same procedure
to each face of Str(ν) we get a bundle of unit vectors. The end-points of these
vectors lie on the unit sphere. Without loss of generality, we assume that no two
neighbouring faces lie in the same plane, then each end-point corresponds to a
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face and can be considered as the image of the face. By analogy with the smooth
case (see Subsection 2.2), we can define the Gauss image at a vertex as follows

Definition 2. The Gauss image of a vertex is defined as the algebraic area of
the region on the unit sphere inscribed by the closed line, formed by geodesic arcs,
that connects the images of neighbouring faces in the star of the vertex.

We will refer to this closed line as the spherical indicatrix of a vertex ν. The
bundle of unit normals, corresponding to Str(ν) is called the normal star of ν.

The validity of our definition follows from the following observations:

1. If Str(ν) is convex, then from the theory of convex polyhedra it is known
that the area of the spherical polygon, cut out by the normal star of ν) in
the unit sphere, gives the measure of curvature around ν (equal to ω(ν)).

2. If Str(ν) is the star of a mixed vertex, then the Gauss image of ν is
not a convex spherical polygon, moreover the spherical indicatrix has self-
intersections, partitioning the Gauss image into several simple polygons, pos-
sibly overlapping. However, the convex normal star, i.e. the normal star of
Str+(ν), will give us the measure of the positive curvature ω+. This is in
conformity with the smooth case.
Indeed, if ν is a mixed vertex then the areas of the Gauss image that represent
the parts of negative curvature, are not overlapping with the area of positive
curvature. The area of the positive curvature in this case represents a convex
simple polygon, which is unique. Note that all the edges of Str+(ν) are also
the edges of Str(ν), and if Str(ν) is not convex, then its deviation from
the convex star occurs at an edge of Str+(ν) (see Fig. 3, (iii) and (iv)). We
call such an edge the deviation edge. The deviation edges occur always in
pairs. The dihedral angle at the deviation edge in Str(ν) is sharper than
the corresponding dihedral angle in Str+(ν). Therefore the end-points of
the outward normals to the faces that are adjacent to the deviation edges
and not the faces of the convex star, will lie outside the spherical polygon
formed by the convex normal star. The intersection points of the spherical
indicatrix, that separate the positive area of the Gauss map from negative
parts, correspond to those faces of Str+(ν) that are not faces of Str(ν).

3. An orientation of the contour around the vertex on a polyhedral surface
induces the orientation on the spherical indicatrix, i.e. the boundary of the
corresponding Gauss image. Thus we can evaluate the curvature around the
vertex by computing the area of the spherical image with the sign + (plus)
in the case that the orientation is preserved, and with the sign − (minus)
otherwise.

In Fig. 4 a convex vertex and a simple mixed vertex are presented together
with their corresponding spherical indicatrices.

The above observations are valid for vertices of an embedded (immersed)
polyhedral surface P(V), examples of which were given in Section 2. More com-
plex cases are discussed in the following subsection.

Remark 2. The Gauss image defined above can also be used to determine the
Mean curvature H of a polyhedral surface P(V). The Mean curvature H is
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Fig. 4. Left: A convex vertex and its spherical indicatrix. Right: A mixed vertex and

its spherical indicatrix

determined along the edges, and for an edge e H(e) equals to (half) the oriented
exterior angle β(e) between the faces adjacent to e. The absolute value of β(e)
is equal to the length of the geodesic arc that connects two normals to the faces
adjacent to e. In this paper we are interested only in analogues of the Gaussian
curvature, and therefore we do not consider the Mean curvature H.

In the next subsection we outline the main steps in our algorithms to con-
struct the Gauss map, to determine the orientation of the spherical indicatrix,
to compute and to visualise curvatures directly from the Gauss image.

3.1 Construction of the Polyhedral Gauss Map

To characterise a polyhedral model (i.e. triangle mesh) P(V) we have developed
algorithms that have the following functionalities:

1. Determination of the Gauss Map of P(V), which consists of
(a) constructing the Gauss map for each of the vertices in V,
(b) revealing the Gauss map signature of each vertex, and computing cur-

vatures incorporated in the Gauss map signature,
(c) computing the total amount of curvatures regarding its signs, of P(V);

2. Curvature Visualisation, which displays a graphical representation of the
Gauss map for a single vertex as well as for the whole surface.

To construct directly the Gauss map for a given vertex, we first construct the
outward vector normals for each of the faces in the star of the vertex, ‘translate’
them in the same origin, and then draw geodesics arcs between them to obtain
a graphic image. The image, in most cases, consists of several spherical simple
polygons, which are sometimes overlapping. We are able to identify each simple
spherical polygon in the Gauss image of a vertex, determine the orientation
of each polygon and thus its sign. Therefore, we are able not only to separate
ω(ν) for a vertex ν into positive and negative parts ω+(ν) and ω−(ν), but into
subparts of the same sign. The number of subparts together with their signs



Polyhedral Gauss Maps and Curvature Characterisation of Triangle Meshes 23

represents the Gauss map signature of a vertex. Each subpart of the negative
sign represents a potential (hidden) saddle region.

The advantage of our method is that it allows the determination of incorpo-
rated curvatures of various types of vertices, including all the above-mentioned
ones and much more complex ones such as: the monkey saddle, other types of
generalised saddles, and vertices with self-intersections, which do not fit exactly
in the category ‘mixed’, described in the previous section. Eventually, we can
determine the curvatures of a vertex of any type (of an oriented polyhedral sur-
face P ). It is also possible to display the Gauss Map for all the vertices of the
object simultaneously, or select only one of the vertices for its Gauss Map to be
shown exclusively (or, correspondingly, to visualise the Gauss map of a region
on the surface). The method is interactive, and we can visualise the regions of
positive curvature separately from the regions of negative curvature.

3.2 Algorithm Description

Input data are taken from text files in the Alias/Wavefront format OBJ. An OBJ
file describes a polyhedral model by the list of the coordinates of the vertices,
and by the indices of vertices that compose the faces. Vertices are described by
their three coordinates in space, and are automatically given an index number,
beginning with 1. The faces are described as a list of vertex indices that delimit
a polygon. The order of the vertices is generally counter clockwise, and thus the
algorithm assumes this ordering.

Vertices and faces read from the OBJ file are stored in arrays. Before com-
puting the Gauss Map, some more information is obtained from the raw data.
The normal vector of each face is obtained by the cross product. The faces that
belong to the star of a vertex are stored in lists. For each vertex, its faces are
ordered so that they will be visited in counter clockwise order.

The process of obtaining the Gauss Map for a single vertex as follows:

– Take the unit normal vectors for all the faces in the star of the vertex, Str(ν).
– The normals are kept in the same order as the faces are visited in counter

clockwise order.
– All the normals are translated to the same origin, forming the normal star

of the vertex. Their endpoints will lie on the surface of a unit sphere.
– The normal’s endpoints are joined together according to their order. Since

they lie in the surface of a sphere, the shortest line between two of them is
a segment (arc) of a great circle of the sphere.

– The arcs thus defined form the spherical indicatrix, and will delimit an area
on the surface of the sphere, which is composed of one or more spherical
polygons.

– If the spherical indicatrix is self-intersecting, then there are more than one
spherical polygons. In this case, new vectors must be added, that will have
their end-points at the location where two arcs intersect. The set of the face
normal vectors plus these new intersection vectors is called the extended star
of the vertex.



24 L. Alboul and G. Echeverria

– The new vectors identify points of separation between the areas of the Gauss
Map. These points are common points for two or more spherical polygons.

– The orientation of each of these spherical polygons is determined by follow-
ing the corresponding loop of the spherical indicatrix, in the order already
established for the normals (by visiting the faces around the vertex in counter
clockwise order). The orientation will be positive if the walk along the loop
is counter clockwise, and negative if the loop is clockwise. Accordingly, the
area of a polygon of the positive orientation is considered as positive, and of
the negative orientation as negative.

– The Gauss image of a single vertex may have all of its area positive, or all
negative, or have spherical polygons with both orientations. The vertex is
then classified, in accordance with its Gauss Map, as positive, negative or
mixed, respectively. These classification differs from the classification, given
in Section 2. A convex vertex is positive, but the positive vertex may have
self-intersections.

– The area of the Gauss Map is computed as a sum of the areas of the in-
dividual spherical polygons, obtained with the well-known spherical excess
formula:

Area = (
∑

αi − (n − 2)π), (11)

where αi is an internal angle of the polygon; n is the number of the sides of
the polygon.
The area of each individual spherical polygon will be less than 2π in most
cases.

Below is the description of the algorithm

For each vertex v in V
{

face-list → Get the list of faces for the current vertex.
Order the faces around the current vertex in CCW

(counter clockwise) orientation.
normal-list → List of the normals from face-list
extended-normal-list → Find arc intersections in

normal-List
If there are any arc intersections
{

polygon-list → Divide into areas using
extended-normal-list

}
Else check for the special case of the ‘monkey saddle’
{

polygon-list → Check for duplicate normals in
normal-list

}
For each spherical polygon p in polygon-list
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{
TotalGaussMapArea → TotalGaussMapArea +
spherical polygon area of p
Count CCW, CW (clockwise) and FLAT polygons

}
Classify the type of vertex.
If all polygons are CCW

Vertex v is positive
Else if all polygons are CW

Vertex v is negative
Else if all polygons are FLAT

Vertex v is flat
Else

Vertex v is mixed
}

Special Cases. There are several special cases, but they belong mostly to one
of the three types, listed below, or a combination of these types; each case is
dealt with in a different way:

– A vertex with pairwise coinciding normals, related to non-adjacent
faces. An example is a vertex of the configuration commonly known as the
monkey saddle, with its 6 faces equally sized. It has three pairs of pair-
wise coinciding normals. This gives us three pairs of identical vectors, and
the Gauss image has, therefore, two overlapping identical areas. But in its
spherical indicatrix there is no clear intersection of the arcs between the
normal vectors. This case is solved by setting that coinciding normal vectors
are not equal among them if no arc intersections are identified.

– A vertex with the spherical indicatrix, self-intersecting several
times at the same point. An example is a vertex that can be constructed
by adding two more faces to a monkey saddle. The star of such a vertex has
four upward slopes and four downward slopes. We call such a vertex a tulip.
The arcs of its spherical indicatrix intersect themselves four times precisely
at the same point. This new point will be common to four different spherical
polygons, so we must keep several copies of this point.

– The area of a simple spherical polygon is greater than 2π. A case of
this type arises only if two simple spherical polygons are ‘glued’ together, i.e.
have the common boundary. This requires additional checks. The main check
consists of determining whether the star of the vertex is a saddle, which can
be done by computing the convex star of the vertex. If the vertex is a saddle
than the vertex lies inside the convex hull. On the basis of this check an
appropriate sign is assigned to the area of the polygon.
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Fig. 5. Gauss images of the basic types of vertices: convex, saddle and mixed

Fig. 6. A complex mixed vertex and its spherical indicatrix (left) and Gauss image

(right)

4 Results—Examples of Curvature Visualisation

Examples of Gauss map visualisations are given below. The display of the Gauss
Map is done in two different views, or scenes, and is implemented using OpenGl.
The left scene shows the model of the original object and, in the right scene, the
areas for the Gauss Map are drawn on top of a sphere. Positive areas are shown
in black, while negative areas are displayed in white.

Gauss Images of Vertices. In this subsection we present examples of Gauss
images of several types of vertices. The Gauss images of three basic types of
vertices, described in Subsection 2.2, are given in Fig. 5.

In Fig. 6 the Gauss image of a more complex mixed vertex is shown. In the left
picture the image of the vertex is presented together with its spherical indicatrix,
and in the right picture the parts of positive and negative area are indicated. The
part of positive area is clearly separated from the parts of negative area, which
are overlapping. We can single out two simple spherical polygons of negative area,
which, loosely speaking, correspond to two ‘hidden’ saddle domains in the vertex.

In Fig. 7 two views of the Gauss image of the monkey saddle, described in
the paragraph ‘Special Cases’, are given. The Gauss image looks similar to the
Gauss of the saddle vertex, but consists eventually of two completely overlapping
spherical polygons.
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Fig. 7. Gauss images of the monkey saddle

Fig. 8. Gauss images of the tulip vertex

In Fig. 8 Gauss image visualisations of the tulip vertex are presented. Its
Gauss image consists of four equal spherical polygons, pairwise adjacent to each
other, which are revealed by the spherical indicatrix. However the coloured Gauss
image looks like one spherical polygon with four sides.

Gauss image visualisations of a generalised monkey saddle are presented in
Fig. 9. Again, as in the previous pictures, in left picture only the spherical
indicatrix is shown in order to provide a better understanding of the complex
Gauss image.

The vertices, presented in Figs. 5–8, are embedded vertices, and their Gauss
maps are in conformity with curvature characterisations for embedded poly-
hedral surfaces given in [3]. In the next few pictures we present Gauss map
visualisations of vertices with self-intersections. This provides curvature charac-
terisation of more complex surfaces, which are neither embedded nor immersed.
Figs. 10 and 11 shows the Gauss map visualisations of two vertices, which we call
a pinch vertex and a reverse pinch vertex. In order to understand the difference
between a pinch vertex and a reverse pinch vertex, imagine a walk along the link
of the star of a vertex ν. In the case of the pinch vertex the walk makes two full
turns around the vertex, both turns having the same orientation (for example,
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Fig. 9. Gauss images of a generalised monkey saddle

Fig. 10. Pinch vertex with the corresponding Gauss map

Fig. 11. Reverse pinch vertex with the corresponding Gauss map

counter clockwise). In the case of the reverse pinch point, the walk makes also
two full turns, one, for example, in the counter clockwise direction, and the sec-
ond one in the ‘reverse’ direction (i.e. clockwise). The Gauss map of the pinch
vertex, presented in Fig. 10, has two overlapping areas, each of positive sign.
One area is equal to the curvature of the convex star of the pinch vertex.
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Fig. 12. Cone-eight with the corresponding Gauss map

The Gauss map of the reverse pinch vertex, presented in Fig. 11, has also
two areas of positive curvature, but they are non-overlapping and separated by
the area of negative curvature.

Finally, we show the Gauss map visualisation of the vertex whose link repre-
sents the figure ‘eight’, for simplicity referred to as the cone-eight. Such a vertex
can also be considered as the ‘extreme’ case of the reverse pinch vertex, when
the negative curvature part has disappeared. The two remaining positive parts
are ’glued’ together and we have the third special case, described in the previous
subsection. The Gauss image of the vertex, presented in Fig. 12, almost covers
the whole sphere.

Gauss Images of Complex Surfaces. In this paragraph we present curvature
visualisations of surfaces of several complex objects. In these visualisations we
emphasise domains of a surface with respect to their incorporated curvatures.
Each domain has vertices of the same curvature type. Therefore we single out
the following domains: domains of positive curvature, whose vertices possess
positive or zero curvature, and that are coloured in black in conformity with the
colours of our Gauss map; domains of negative curvature, accordingly coloured in
white, whose vertices are saddle-type vertices,; and domains of mixed curvature,
coloured in grey, whose vertices are mixed. We visualise curvature domains by
two methods: by the GMS method and by means of angle deficit.

In Fig. 13 visualisations of a torus are presented. Two views for each cur-
vature visualisation are given. The left picture in each figure is the curvature
visualisation of a torus by using the angle deficit, and the right picture - by
means of the GMS method. Both visualisations are presented with the Gauss
image of a selected vertex. One can clearly see that the curvature visualisation
by means of the angle deficit does not reflect the ‘waviness’ of the torus. The
vertex, determined as a vertex of positive curvature by means of the angle deficit,
has eventually two parts of negative curvature, and is a mixed vertex, which is
clearly seen in the curvature visualisation by means of the GMS method. The
GMS visualisation indicates that the mesh may not be optimal.

By applying the optimisation method based on the minimsation of total ab-
solute extrinsic curvature, introduced in [1] and later further developed in [8, 2],
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Fig. 13. Two visualisations of the initial torus with the Gauss image of a selected

vertex

Fig. 14. Two visualisations of the optimised torus with the Gauss image of a selected

vertex

we obtain an optimal mesh for this torus. The visualisations of the optimal mesh
are given in Fig 14 (with the Gauss image of a selected vertex).

Again, as in Fig. 13, in the left picture of Fig. 14 the visualisation based on the
angle deficit is presented. We can see that now the two curvature visualisations
are almost identical. In the right view, mixed vertices form a thin circular ‘grey’
domain on the ‘top’ (and ‘bottom’) of the torus that separates the domains of
positive and negative curvature. This domain is not present in the left view. The
Gauss image of a vertex situated in this domain reflects the almost symmetrical
distribution of negative and positive curvatures in this vertex.

In the last two figures two similar views of the curvature visualisation of a
torso are presented. In Fig. 15 the visulisation is given with the full Gauss image
and in Fig. 16 with the image of a selected vertex. The mesh can be considered
as optimal in this case; however, the angle deficit method does not describe the
curvature domains of the mesh correctly, as it cannot recognise mixed vertices.
In this visualisation a vertex determined as a saddle by the angle deficit method,
eventually describe the curvature domains of the mesh correctly.
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Fig. 15. Two visualisations of the torso with the full Gauss image

Fig. 16. Two visualisations of the torso with a selected vertex

5 Conclusions and Future Work

The conclusions which may be made from the results presented in the previous
section can be summarised as follows:

– We develop a novel method to construct Gauss maps directly from a polyhe-
dral surface. The method is theoretically valid and robust in implementation.
It constructs Gauss images for a very large class of polyhedral surfaces, in-
cluding non-manifold surfaces.

– Visualisation of Gauss images enables us to reveal all existing domains of
positive and negative curvature of a surface. These domains, except for very
special cases, cannot be determined by means of the angle deficit.

– The advantage of the discrete curvature computation by using the GMS with
respect to discrete curvature computation presented in Section 2, is that it
allows to split the curvature domains of the same sign into sub-domains. This
gives us a more complete picture of geometric features of the surface and may
be very useful for shape characterisation and description of an object.

– Curvature characterisation of a surface by means of the angle deficit is suffi-
cient neither to capture the curvature information of a polyhedral surface nor
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to estimate the Gaussian curvature of the underlying smooth surface from a
mesh. However, it can serve as an indicator that a mesh should be optimised
in case of a significant discrepancy in curvature visulisation of a surface be-
tween the GMS method and the angle deficit method. Indeed, for estimating
the Gaussian curvature at a point ν of the underlying smooth surface the
normalised angle deficit, i.e. 3ω(ν)/Area(Str(ν), where Area(Str(ν) is the
sum of the areas of triangles in Str(ν), is widely used. But the triangles in
Str(ν) are determined by the connectivity of the mesh. Therefore, roughly
speaking, the connectivity of the mesh influences estimation of the curva-
ture, and therefore, obtained discrete estimates might differ considerably
from curvatures of the underlying smooth surface.

– The GMS method might be useful to check the validity of the mesh in the
cases when we presume that the mesh should be without self-intersections.
All ‘wrong’ self-intersections in vertices will be revealed by the GMS.

We are currently working on the algorithm that will visualise ‘hidden’ do-
mains not only in the star of a vertices, but also in a whole surface. It means
that the grey areas in a surface that indicate the domains of mixed vertices,
will be replaced by the domains of positive and negative curvatures. This will
be very useful for evaluating the accuracy of curvature estimates of the under-
lying smooth surface directly from a mesh as well as for developing subdivision
schemes that will guarantee the convergence of these estimates when the mesh
is refined.
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14. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H., Discrete differential-
geometry operators for triangulated 2-manifolds. In: Hege, H.-Ch., and Polthier,
K. (eds.), Visualization and Mathematics III, pp. 35-59, Springer-Verlag, 2003.

15. Peng, J., Li, Q., Ja Kuo, C.-C., and Zhou, M., Estimating Gaussian Curvatures
from 3D Meshes. In: Rogowitz, B.E., Pappas, Th. N. (eds.)

16. Sullivan, J., Curvature measures for discrete surfaces. http://torus.math.uiuc.edu/
jms/Papers/dscrv.pdf



Manifold Embedding of Graphs
Using the Heat Kernel

Xiao Bai, Richard C. Wilson, and Edwin R. Hancock

Department of Computer Science,
University of York, York Y010 5DD, UK
{baixiao, wilson, erh}@cs.york.ac.uk

Abstract. In this paper, we investigate the use of heat kernels as a
means of embedding the individual nodes of a graph on a manifold in a
vector space. The heat kernel of the graph is found by exponentiating
the Laplacian eigen-system over time. We show how the spectral rep-
resentation of the heat kernel can be used to compute both Euclidean
and geodesic distances between nodes. We use the resulting pattern of
distances to embed the nodes of the graph on a manifold using multi-
dimensional scaling. The distribution of embedded points can be used
to characterise the graph, and can be used for the purposes of graph
clustering. Here for the sake of simplicity, we use spatial moments. We
experiment with the resulting algorithms on the COIL database, and
they are demonstrated to offer a useful margin of advantage over exist-
ing alternatives.

1 Introduction

One of the problems that arises in the manipulation of large amounts of graph
data is that of embedding the nodes of individual graphs in a low dimensional
space. This is a problem that arises in a number of areas including the cluster-
ing, matching and drawing of graphs. Stated succinctly, the problem is that of
locating a mapping between the nodes of the graph and points in space. Once
graph nodes have been mapped to points, then geometric methods can be used
to characterise the original graph. Drawing the graph becomes the problem of
joining the points, graph matching the problem of aligning them, and graph-
clustering the problem of characterising the point distribution using moments
or variance measurements. In other words, by using the mapping the discrete
problems of graph manipulation can be re-posed as computationally simpler
geometric operations.

In the mathematics literature, there is a considerable body of work aimed at
understanding how graphs can be embedded on manifolds [1]. Broadly speaking
there are three ways in which the problem has been addressed. First, the graph
can be interpolated by a surface whose genus is determined by the number of
nodes, edges and faces of the graph. Second, the graph can be interpolated by a
hyperbolic surface which has the same pattern of geodesic (internode) distances
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as the graph [2, 3]. Third, a manifold can be constructed whose triangulation is
the simplicial complex of the graph [4, 5].

In the pattern analysis community, on the other hand, there has recently
been renewed interest in the use of embedding methods motivated by graph
theory. One of the best known of these is ISOMAP [6]. Here a neighborhood
ball is used to convert data-points into a graph, and Dijkstra’s algorithm is
used to compute the shortest(geodesic) distances between nodes. By applying
multidimensional scaling (MDS) to the matrix of geodesic distances the mani-
fold is reconstructed. The resulting algorithm has been demonstrated to locate
well-formed manifolds for a number of complex data-sets. Related algorithms in-
clude locally linear embedding which is a variant of principal component analysis
(PCA) that restricts the complexity of the input data using a nearest neighbor
graph [7], and the Laplacian eigen-map that constructs an adjacency weight
matrix for the data-points and projects the data onto the principal eigenvec-
tors of the associated Laplacian matrix (the degree matrix minus the weight
matrix) [8]. Collectively, these methods are sometimes referred to as manifold
learning theory.

The spectrum of the Laplacian matrix has been widely studied in spectral
graph theory [9] and has proved to be a versatile mathematical tool that can
be put to many practical applications including routing [10], indexing [11], clus-
tering [12] and graph-matching [13, 14]. One of the most important properties
of the Laplacian spectrum is its close relationship with the heat equation. The
heat equation can be used to specify the flow of information with time across
a network or a manifold [15]. According to the heat-equation the time deriva-
tive of the kernel is determined by the graph Laplacian. The solution to the
heat equation is obtained by exponentiating the Laplacian eigen-system over
time. Because the heat kernel encapsulates the way in which information flows
through the edges of the graph over time, it is closely related to the path length
distribution on the graph. The graph can be viewed as residing on a manifold
whose pattern of geodesic distances is characterised by the heat kernel. For short
times the heat kernel is determined by the local connectivity or topology of the
graph as captured by the Laplacian, while for long-times the solution gauges the
global geometry of the manifold on which the graph resides.

For a Riemannian manifold, the heat kernel is determined by the pattern
of geodesic distances, and can provide a means of analysing both the local
and global differential geometry of the manifold. In particular, differential in-
variants can be computed from the heat kernel, and these in turn are related
to the Laplacian eigen-system. This field of study is sometimes referred to as
spectral geometry [16, 15]. One of the most interesting recent developments in
this area has been to establish a link between graph-spectra and the geom-
etry of the underlying manifold [17, 18, 19, 20]. Here considerable insight can
be achieved through the analysis of the heat kernel of the graph [17, 19]. In
the pattern analysis area Lebanon and Lafferty [18] have used the heat-kernel
to construct statistical manifolds that can be used for inference and learning
tasks.
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There are a number of different invariants that can be computed from the
heat-kernel. Asymptotically for small time, the trace of the heat kernel [9] (or
the sum of the Laplacian eigenvalues exponentiated with time) can be expanded
as a rational polynomial in time, and the co-efficients of the leading terms in
the series are directly related to the geometry of the manifold. For instance, the
leading co-efficient is the volume of the manifold, the second co-efficient is related
to the Euler characteristic, and the third co-efficient to the Ricci curvature. The
zeta-function (i.e. the sum of exponentials found by raising the eigenvalues to
a non-integer power) for the Laplacian also contains geometric information. For
instance its derivative at the origin is related to the torsion tensor for the man-
ifold. Finally, Colin de Verdiere has shown how to compute geodesic invariants
from the Laplacian spectrum [21].

The aim in this paper is to develop a means of embedding the nodes of graphs
as points on a manifold in a vector space. In other words, we seek a mapping
from the node-set of the graph to points in a vector-space. To do this we make
use of multidimensional scaling. This is a technique that allows data specified
in terms of relative distances rather than ordinal values to be embedded in a
low-dimensional space in a manner that minimises the distortion (or stress) of
the distance pattern. To apply this technique to graphs we require a means
of assigning a distance measure to the graph-edges. Our distance function is
furnished by an analysis of the heat-kernel. When the manifold on which the
nodes of the graph reside is locally Euclidean, then the heat kernel may be
approximated by a Gaussian function of the geodesic distance between nodes. By
equating the spectral and Gaussian forms of the kernel, we can make estimates of
the Euclidean distances (i.e. the shortest distance in the vector space) between
the nodes of the graph under study. The geodesic distance (i.e the shortest
distance on the manifold) is given by the floor of the path-length distribution,
and this may be computed from the Laplacian spectrum. The difference between
the geodesic and the Euclidean distances is related to the sectional curvature of
the geodesics corresponding to edges of the embedded graph on the manifold.
The manifold may be approximately reconstructed by using multi-dimensional
scaling to locate a low-distortion embedding of the Euclidean distances.

Once embedded in this space, we can perform a number of graph-manipulation
tasks by applying simple point-pattern analysis algorithms to the mapped node
positions. Here we focus on the problem of graph clustering. Our approach is to
extract feature-vectors that characterise the point distributions that result from
the embedding the nodes of the graphs. Each graph has an associated feature-
vector that characterises how its nodes are distributed in space. Sets of graphs
can be projected into a pattern space by performing principal components anal-
ysis on the feature-vectors. We characterise the shape of point-distribution of
the embedded nodes using affine invariant spatial moments.

The outline of this paper is as follows. In Section 2 we show how the analysis
of the heat-kernel can lead to a measure of Euclidean distance between individual
nodes of a graph. Section 3 discusses the spectral geometry of the manifold, and
shows how the spectral estimates of geodesic and Euclidean distances derived in
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Section 2 can be used to estimate the sectional curvature of the manifold. Section
4 describes the Euclidean multidimensional scaling method used to embed the
graphs in low-dimensional space. Section 5 details the methods used to cluster the
embedded graphs. In Section 6, we present experiments on real world synthetic
data. Finally, Section 7 offers conclusions and suggests directions for future work.

2 Heat Kernels on Graphs

In this section, we develop a method for approximating the Euclidean distance
between the nodes of a graph by exploiting the properties of the heat kernel. To
commence, suppose that the graph under study is denoted by G = (V,E) where
V is the set of nodes and E ⊆ V × V is the set of edges. Since we wish to adopt
a graph-spectral approach we introduce the adjacency matrix A for the graph
where the elements are

A(u, v) =

{
1 if (u, v) ∈ E

0 otherwise
(1)

We also construct the diagonal degree matrix D, whose elements are given by
D(u, u) = deg(u) =

∑
v∈V A(u, v). ¿From the degree matrix and the adjacency

matrix we construct the Laplacian matrix L = D−A, i.e. the degree matrix mi-
nus the adjacency matrix. The normalised Laplacian is given by L̂ = D− 1

2 LD− 1
2 .

The spectral decomposition of the normalised Laplacian matrix is

L̂ = ΦΛΦT =
|V |∑
i=1

λiφiφ
T
i (2)

where Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the ordered eigen-
values (0 = λ1 < λ2 ≤ λ3...) as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix
with the correspondingly ordered eigenvectors as columns. Since L̂ is symmetric
and positive semi-definite, the eigenvalues of the normalised Laplacian are all
positive. The eigenvector φ2 associated with the smallest non-zero eigenvalue
λ2 is referred to as the Fiedler-vector. We are interested in the heat equation
associated with the Laplacian, i.e.

∂ht

∂t
= −L̂ht (3)

where ht is the heat kernel and t is time. The heat kernel can hence be viewed
as describing the flow of information across the edges of the graph with time.
The rate of flow is determined by the Laplacian of the graph. The solution to
the heat equation is found by exponentiating the Laplacian eigen-spectrum, i.e.

ht =
|V |∑
i=1

exp[−λit]φiφ
T
i = Φ exp[−tΛ]ΦT (4)
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The heat kernel is a |V |× |V | matrix, and for the nodes u and v of the graph
G the resulting element is

ht(u, v) =
|V |∑
i=1

exp[−λit]φi(u)φi(v) (5)

When t tends to zero, then ht � I − L̂t, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, t is large,
then ht � exp[−tλ2]φ2φ

T
2 , where λ2 is the smallest non-zero eigenvalue and φ2 is

the associated eigenvector, i.e. the Fiedler vector. Hence, the large time behavior
is governed by the global structure of the graph.

2.1 Geodesic Distance

It is interesting to note that the heat kernel is also related to the path length
distribution on the graph. To show this, consider the matrix P = I − L̂, where
I is the identity matrix. The heat kernel can be rewritten as ht = e−t(I−P ).
We can perform a McLaurin expansion on the heat-kernel to re-express it as a
polynomial in t. The result of this expansion is

ht = e−t

(
I + tP +

(tP )2

2!
+

(tP )3

3!
+ · · ·

)
(6)

= e−t
∞∑

k=0

P k tk

k!
(7)

The matrix P has elements

P (u, v) =

⎧⎪⎨⎪⎩
1 if u = v

1√
deg(u)deg(v)

if u �= v and (u, v) ∈ E

0 otherwise
(8)

As a result, we have that

P k(u, v) =
∑
Sk

k∏
i=1

1√
deg(ui)deg(ui+1)

(9)

where the walk Sk is a sequence of vertices u0, · · · , uk of length k such that
ui = ui+1 or (ui, ui+1) ∈ E. Hence, P k(u, v) is the sum of weights of all walks
of length k joining nodes u and v. In terms of this quantity, the elements of the
heat kernel are given by

ht(u, v) = exp[−t]
|V |2∑
k=0

P k(u, v)
tk

k!
(10)

Hence, the heat kernel takes the form of a sum of Poisson distributions over the
path-length with time as parameter. The weights associated with the different
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components are determined by P k(u, v). As the path-length k becomes large,
the Poisson distributions approach a Gaussian, with mean k and variance k.

A spectral expression for the matrix P k can be obtained using the eigen-
decomposition of the normalised Laplacian. Writing P k = (I − L̂)k = Φ(I −
Λ)kΦT , the element associated with the nodes u and v is

P k(u, v) =
|V |∑
i=1

(1 − λi)kφi(u)φi(v) (11)

The geodesic distance between nodes, i.e. the length of the walk on the graph
with the smallest number of connecting edges, can be found by searching for the
smallest value of k for which P k(u, v) is non zero, i.e. dG(u, v) = floorkP k(u, v).

2.2 Euclidean Distance

Here we are interested in using the heat-kernel to compute an approximate
Euclidean distance between nodes. This is the shortest distance between nodes
in the vector space in which the manifold resides. Knowledge of this distance
is important if Euclidean multidimensional scaling is to be used to reconstruct
the manifold, i.e. embed the individual node of the graph in a low-dimensional
space. Asymptotically with small t, on a Riemannian manifold the heat kernel
can be approximated by the so-called paramatrix [22]

ht(u, v) = [4πt]−
n
2 exp[− 1

4t
dG(u, v)2]

∞∑
m=0

bm(u, v)tm (12)

where dG(u, v) is the geodesic distance between the nodes u and v on the
manifold, n is the dimensionality of the space (taken to be 3 in our later exper-
iments with MDS) and bm(u, v) real-valued co-efficients. When the manifold is
locally Euclidean, then only the first term in the polynomial series is significant
and the heat kernel is approximated by a Gaussian. Hence, to approximate the
Euclidean distance between nodes in the embedding we can equate the spectral
and Gaussian forms for the kernel. The result is

d2
E(u, v) = −4t ln

{
(4πt)

n
2

|V |∑
i=1

exp[−λit]φi(u)φi(v)
}

(13)

An alternative form for the above is

d2
E(u, v) = − ln

{
(4πt)2nt

[ |V |∑
i=1

exp[−λit]φi(u)φi(v)
]4t}

(14)

and this leads us to the spectral form for the distance matrix

d2
E = − ln[(4πt)2ntΦ exp[−4Λt2]ΦT ] (15)

Hence, the distance matrix is just the negative logarithm of a matrix found
by applying a transformation to the eigenvalue spectrum. Such a procedure was
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suggested by Smola and Kondor [20] as a means for regularising graphs. However,
the function suggested above is more complex than the alternatives explored for
regularisation.

Since ht = exp[−L̂t], we can write d2
e = 4L̂t2 − 2nt ln[4πt]. As a result if u

and v are connected by an edge, and u �= v, then d2
E(u, v) = − 4t2√

deg(u)deg(v)
−

2nt ln[4πt]. Hence, dE(u, v) tends to zero as t tends to zero.

3 Multidimensional Scaling

In order to explicitly reconstruct the manifold, we embed the pattern of Eu-
clidean distances in a low dimensional space in a manner which minimises the
distortion using multidimensional scaling(MDS). The pairwise Euclidean dis-
tances between nodes dE(u, v) are used as the elements of an |V | × |V | dissimi-
larity matrix S, whose elements are defined as follows

S(u, v) =

{
d2

E(u, v) if u �= v

0 if u = v
(16)

The first step of MDS is to calculate a matrix T whose element with row
r and column c is given by T (r, c) = −1

2 [S(r, c) − Ŝ(r, .) − Ŝ(., c) + Ŝ(., .)],
where Ŝ(r, .) = 1

|V |
∑|V |

c=1 S(r, c) is the average dissimilarity value over the rth

row, Ŝ(., c) is the dissimilarly defined average value over the cth column and
Ŝ(., .) = 1

|V |2
∑|V |

r=1

∑|V |
c=1 S(r, c) is the average dissimilarity value over all rows

and columns of the dissimilarity matrix T .
We subject the matrix T to an eigenvector analysis to obtain a matrix of

embedding co-ordinates X. If the rank of T is k, k ≤ |V |, then we will have
k non-zero eigenvalues. We arrange these k non-zero eigenvalues in descending
order, i.e. l1 ≥ l2 ≥ · · · ≥ lk > 0. The ith ordered eigenvector is denoted by
f i. The matrix with the node embedding co-ordinates as rows has the ordered
scaled eigenvectors as columns and is given by X = [

√
l1f1|

√
l2f2| . . . |

√
lsfs].

For the graph node indexed u, the embedded vector of co-ordinates is given by
the uth row of the matrix, i.e. xu = (Xu,1, Xu,2, ...,Xu,s)T .

Of course this embedding procedure can be applied to the geodesic distances
instead of the Euclidean distances. However, this is inconsistent with the Eu-
clidean multidimensional scaling procedure that we have adopted. As we will
demonstrate later, the use of geodesic distances leads to much poorer results.

4 Clustering

Once the nodes of a graph have been embedded, we can attempt to characterise
the structure of the graph by summarising the distribution of points associated
with the nodes. Here we explore the two alternatives of using statistical moments
and a graph-spectral characterisation.
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4.1 Statistical Moments

We use spatial moments to characterise the embedded point sets. The general
moment is defined to be

μpq =
|V |∑
u=1

|V |∑
v=1

(Xu,1 − X̂1)p(Xv,2 − X̂2)q (17)

where X̂k = 1
|V |
∑|V |

u=1 Xu,k. ¿From the raw moment data, we compute the four
affine invariants suggested by Flusser and Suk [23]:

I1 =
μ20μ02 − μ2

11

μ4
00

(18)

I2 =
(μ2

30μ
2
03 − 6μ30μ21μ12μ03 + 4μ30μ

3
12 + 4μ3

21μ03 − 3μ2
21μ

2
12)

μ10
00

(19)

I3 =
μ20(μ21μ03 − μ2

12) − μ11(μ30μ03 − μ21μ12) + μ02(μ30μ12 − μ2
21)

μ7
00

(20)

I4 = (μ3
20μ

2
03 − 6μ2

20μ11μ12μ03 − 6μ2
20μ02μ21μ03 (21)

+ 9μ2
20μ02μ

2
12 + 12μ20μ

2
11μ21μ03 + 6μ20μ11μ02μ30μ03

− 18μ20μ11μ02μ21μ12 − 8μ3
11μ30μ03 − 6μ20μ

2
02μ30μ12

+ 9μ20μ
2
02μ

2
21 + 12μ2

11μ02μ30μ12 − 6μ11μ
2
02μ30μ21

+ μ3
02μ

2
30)/μ11

00

The zero-order moment μ00 measures area. The second-order moment is akin
to the moment of inertia of the object about its centre-of-gravity. The third-
order measures the degree of symmetry. The four moment invariants are used to
compute the graph feature vector B = (I1, I2, I3, I4)T .

4.2 Spectral Characterisation

To construct a spectral characterisation of the embedded points, we commence
by computing a weighted proximity matrix W with elements

WE(u, v) =

{
exp[−‖xu−xv‖2

2
2σ2 ] if ‖xu − xv‖2 < r

0 otherwise
(22)

where σ is a scale constant and r is the radius of a neigbourhood hypersphere
in the embedding space. From the weighted proximity matrix we compute the
Laplacian matrix LE = WE − DE where DE is diagonal degree matrix with
elements DE(u, u) =

∑
v∈V W (u, v). The spectral decomposition of the Lapla-

cian matrix is LE =
∑n

i=1 λE
i eiei

T , where λE
i is the ith eigenvalue and ei is the

corresponding eigenvector of the Laplacian matrix LE . Our spectral character-
isation of the graph is based on the vector of N leading Laplacian eigenvalues
B = (λE

1 , ...., λE
N )T .
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Fig. 1. Eight objects with their Delaunay graphs overlayed

4.3 Principal Components Analysis

Our aim is to construct a pattern-space for a set of graphs with pattern vectors
Bk, k = 1, ...,M , extracted using either spatial moments, heat-content polyno-
mial co-efficents, sectional curvature histograms or Laplacian eigenvalues. There
are a number of ways in which the graph pattern vectors can be analysed. Here,
for the sake of simplicity, we use principal components analysis (PCA). We
commence by constructing the matrix S = [B1|B2| . . . |Bk| . . . |BM ] with the
graph feature vectors as columns. Next, we compute the covariance matrix for
the elements of the feature vectors by taking the matrix product C = SST .
We extract the principal components directions by performing the eigendecom-
position C =

∑M
i=1 liuiu

T
i on the covariance matrix C, where the li are the

eigenvalues and the ui are the eigenvectors. We use the first s leading eigenvec-
tors (3 in practice for visualisation purposes) to represent the graphs extracted
from the images. The co-ordinate system of the eigen-space is spanned by the
s orthogonal vectors U = (u1,u2, ..,us). The individual graphs represented by
the vectors Bk, k = 1, 2, . . . , M can be projected onto this eigenspace using the
formula Bk = UT Bk. Hence each graph Gk is represented by an s-component
vector Bk in the eigen-space.

5 Experiments

We have applied our embedding method to images from the COIL data-base.
The data-base contains views of 3D objects under controlled viewer and lighting
conditions. For each object in the data-base there are 72 equally spaced views,
which are obtained as the camera circumscribes the object. We study the images
from eight example objects. A sample view of each object is shown in Figure 1.
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For each image of each object we extract feature points using the method of [24].
We have extracted graphs from the images by computing the Voronoi tessella-
tions of the feature-points, and constructing the region adjacency graph, i.e. the
Delaunay triangulation, of the Voronoi regions. Our embedding procedure has
been applied to the resulting graph structures.

We commence by investigating the behavior of the moments extracted from
the embedded points. In Figure 2 we plot the four moments as a function of the
time parameter t.

For this experiment we have used a graph for the duck in Figure 1. The
main effect to note here is that as the time parameter increases then so the
four moments become small and indistinguishable. In Figure 3 we plot the four
moments separately as a function of the view number for the images of the eight
objects studied in the COIL data-base. From the top-left, and clockwise, the
sequence shows the first, second, third and fourth moments respectively.

The individual moments appear relatively stable with view number. However,
there are views where the moment jumps significantly, and this can be attributed
to poor segmentation of the associated feature points from which the graphs are
constructed. It is clear that although the individual moments could not be used
to distinguish the objects since their traces with view number overlap, when
combined they are sufficient to distinguish the objects.

Based on this study of the moments, it appears that they may provide the
basis for a stable clustering of the graphs. We have therefore performed PCA on
vectors whose components are the four moments. The data has been projected
onto the space spanned by the leading three eigenvectors for the moment-vectors.

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120
Moment One
Moment Two
Moment Three
Moment Four

Fig. 2. Moments as a function of t for a graph from the COIL database
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Fig. 3. Individual moments for graphs from the COIL database as a function of view

number

We then investigate the effect of varying the time parameter t. In Figure 4
we show the effect on the graph embeddings when we vary t from 0.01π to
10000π. From left-to-right and top-to-bottom, we show the clustering results
obtained when t equals 0.01π,1π, 4π, 10π, 100π and 10000π. In the figures the
different views of the same object are displayed as differently colored symbols.
In Figures 5 we show corresponding plots for the pairwise distances for the
embedded graph nodes. The main feature to note from these plots is that as the
value of t increases, then so the clusters corresponding to the different objects
become overlapped. When the embedding procedure is applied to the geodesic
distance dG, found from the floor of the function P k(u, v), then the results shown
in Figure 6 are obtained. Little of the cluster-structure emerges and the result
is much poorer than that obtained with Euclidean distance at low values of t.

For comparison, Figure 7 shows the corresponding result when spectral clus-
tering is used. Here we use the leading eigenvalues of the adjacency matrix as the
components of a feature vector. The main qualitative feature is that the different
views of the ten objects are more overlapped than when the heat-kernel method
is used with a low value of t.

To investigate the behavior of the three methods in a more quantitative way,
we have plotted the Rand index [25] for the different objects. The Rand index
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Fig. 4. Results of applying PCA to the point-moments of the embedded graphs with

varying t

is defined as: RI = A
A+D where A is the number of ”agreements” and D is the

number of ”disagreements” in cluster assignment. The index is hence the fraction
of views of a particular class that are closer to an object of the same class than
to one of another class. The curve marked with asterisks in the plot shows the
Rand index as a function of t for the spatial moments. The performance of the
method drops off rapidly once t exceeds 2π. The Rand index for the spectral
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Fig. 5. Distance matrices from the moments for the embedded graphs with varying t

clustering method is shown as a line marked with diamonds and that for the
heat-content invariants as a black line. The performance of the heat-content
invariants is slightly poorer and the spectral method significantly poorer than
that for the heat-kernel method for small values of t.
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Fig. 6. Result of applying PCA to the affine moments obtained when the embedding

is performed using geodesic distances

−6

−4

−2

0

2

4

6

8

−2

0

2

4

6

8
−3

−2

−1

0

1

2

3

4

Spectral Clustering Result

object1
object2
object3
object4
object5
object6
object7
object8

Fig. 7. Result of applying PCA to the leading Laplacian eigenvalues
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6 Conclusions and Future Work

In this paper we have explored how the use of heat kernels can lead to a measure
of geodesic distance that can be used for the purposes of embedding graphs in
low dimensional Euclidean spaces. The distance measure is found by equating
the spectral and Gaussian forms of the heat kernel. We show how MDS can be
used to embed the the distances.

Once the graphs are embedded in this space, then we can pose the problem
of clustering as that of characterising the point-set distribution. We have shown
how graph-clustering can be successfully effected using spatial moments.

There are clearly a number of ways in which the work reported in this paper
can be extended. First, it would be interesting to explore the use of the sectional
curvature as a means of directly embedding the nodes of the graphs on a mani-
fold. One of the possibilities that exists here is the variant of MDS reported by
Lindman and Caelli [26]. A second line of investigation would be the Euclidean
distances or sectional curvature associated with the edges as attributes for the
purposes of graph matching. Finally, it would be interesting to investigate if
the distances and curvatures could be used to aid the process of visualising or
drawing graphs.
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Abstract. We propose a fully automatic and view-independent compu-
tational procedure for detecting salient curvature extrema in range data.
Our method consists of two major steps: (1) smoothing given range data
by applying a nonlinear diffusion of normals with automatic threshold-
ing; (2) using a Canny-like non-maximum suppression and hysteresis
thresholding operations for detecting crease pixels. A delicate analysis of
curvature extrema properties allows us to make those Canny-like image
processing operations orientation-independent. The detected patterns of
creases can be considered as ‘shape fingerprints’. The proposed method
can be potentially used for shape recognition, quality evaluation, and
matching purposes.

1 Introduction

Shape features invariant under 3D rigid motions and scalings are important for
many 3D shape processing operations including shape recognition, matching,
and segmentation. Recent advances in 3D shape acquisition technology call for
developing reliable methods for range data processing. In this paper, we propose
a computational scheme for robust detection of view- and scale-invariant surface
creases, ridges and ravines, in range data.

Surface creases defined via principal curvature extrema are view- and scale-
independent and, therefore, have numerous applications in geometric modeling,
image processing and other fields. They have been intensively studied in connec-
tion with research on the accommodation of the eye lens [1], structural geology
[2], human perception [3], CAGD and computer graphics [4, 5, 6, 7, 8, 9, 10, 11,
12], face recognition [13], image analysis [14, 15, 16, 17], machine vision [18], ge-
ographical information systems [19], computational anatomy [20], and classical
differential geometry and singularity theory [13, 21, 22, 23, 24, 25, 26, 27, 28]. See
also references therein.

We define the ridges on a smooth surface as the locus of points where the
maximal principal curvature takes a positive maximum along its curvature line
and the ravines as the locus of points where the minimal principal curvature
attains a negative minimum along its curvature line.

Fig. 1 shows the ridges and ravines detected in a range data with complex
geometry.

The above definition of the ridges and ravines resembles a widely used def-
inition for edges in image processing: the edges consists of pixels where the

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 50–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Ridges (blue) and ravines (red) detected in ‘angelo’ range data

magnitude of the gradient of the image intensity has a local maximum in the
direction of the gradient (see, for example, [29]).

The ridges and ravines defined as above are perceptually salient [3], are in-
variant under rotations, translations, and scalings, and correspond to the skeletal
edges of the shape skeletons (defined locally) [13, 21, 26, 28]. Note also that the
ridges and ravines are dual according to the above definition: changing the sur-
face orientation turns the ridges into the ravines and vice versa.

Since computing of the ridges and ravines involves estimation of high-order
surface derivatives, these surface features are very sensitive to noise and a so-
phisticated smoothing procedure is required in order to achieve robust detection
of the ridges and ravines on shapes reconstructed from real world data.

Our method is based on a delicate analysis of curvature extrema (Section 2)
and consists of of two steps: adaptive smoothing (Section 4) and detection (Sec-
tion 3). The main ingredient of our range data smoothing scheme is a nonlinear
diffusion of normals [30, 31, 32]. The main advantage of the scheme over these
and similar techniques consists of using no user-specified parameters except the
number of smoothing iterations.

We want to emphasize here that the ridges and ravines studied in this paper
are not the best choice for range image segmentation purposes. Several range
image segmentation algorithms proposed recently demonstrate superior perfor-
mance in segmenting noisy range data consisted of a collection of geometrically
simple objects [33, 34]. Moreover, as shown in [21], the ridges and ravines on a
generic smooth surface do not deliver a surface segmentation. In spite of a com-
plex smoothing procedure we use, our ridge and ravine detection scheme remains
sensitive to noise and produces satisfactory results while processing relatively
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clean data like range images generated by laser scanner devices. Nevertheless
we envision potential applications of our method to shape recognition, quality
evaluation, and matching purposes.

2 Local Shape Analysis

Since the ridges and ravines turn into each other as the surface orientation is
changed, without loss of generality we can consider only the ridges.

Consider a smooth surface and a non-umbilic point p on it. Let us choose
local coordinates such that p is at the origin, the (x, y)-plane is the tangent
plane to the surface at p, the principal directions tmax and tmin coincide with
x and y axes, respectively, and the normal n coincides with z-axis. Then in a
small vicinity of p the surface is represented in the Monge form as the graph of
a generic smooth function z = F (x, y) such that

F (x, y) =
1
2
(
λx2 + μy2

)
+

1
6
(
ax3 + 3bx2y + 3cxy2 + dy3

)
+

1
24
(
ex4 + 4fx3y + . . .

)
+ O(x, y)5

with λ = kmax(0, 0), μ = kmin(0, 0), and λ > μ. Assume that the surface orien-
tation be chosen so that the maximal principal curvature is nonnegative at p:
λ ≥ 0.

Since at p the principal directions tmax and tmin are given by vectors (1, 0)
and (0, 1), respectively, then

∂kmax

∂tmax
(0, 0) = a and

∂kmax

∂tmin
(0, 0) = b. (1)

The curvature line associated with kmax is locally described by the problem

dy

dx
=

bx + cy

λ − μ
+ O(x, y)2, y(0) = 0.

Therefore, y′(0) = 0, y′′(0) = b/(λ − μ) and in a neighborhood of the origin the
curvature line is locally given by

y =
bx2

2(λ − μ)
+ O(x3).

It allows us to compute the Taylor series expansion of kmax on its curvature line

λ + ax +
(
−3λ3 + e +

3b2

λ − μ

)
x2

2
+ O(x3). (2)

Thus kmax has a positive maximum along its curvature line if and only if

λ > 0, a = 0, A = −3λ3 + e +
3b2

λ − μ
< 0. (3)
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Note that from (3) it follows that the ridges do not pass through generic
umbilics [21]. Indeed, assume that a ridge goes through an isolated umbilical
point. Passing to the limit λ − μ → 0 in (3) implies a = 0 = b and, therefore,
the umbilic is not generic.

Of course, surface curves consisting of some other types of extrema of the
principal curvatures along their curvature lines can go through generic umbilics.
Interesting relations between the curvature line patterns near a generic umbilic
[35, 36] and extrema of the principal curvatures were analyzed in [13, 24, 27].

Consider the intersection curve between the surface and plane {y = αz},
where α is a parameter. The curve is locally described by the equation

y = αλx2/2 + . . . .

Let us consider the function

K(x, y) = kmax(x, y) +
C

2
(
x2 + y2 + F (x, y)2

)
(4)

obtained from the maximal principal curvature by adding a function proportional
to the squared distance from the origin. The Taylor expansion of K on the
intersection curve has the form

λ + ax +
(
−3λ3 + e +

2b2

λ − μ
+ αbλ + C

)
x2

2
+ O(x3). (5)

Now let us set
C = −αbλ + b2/(λ − μ). (6)

It follows from (2) and (5) that the ridge points can be detected as the positive
maxima of K(x, y) at p along the intersection curve between the surface and
plane {y = αz}.
Theorem 1. Let K(x, y) be defined by (4) and (6). Then p is a ridge point if
and only if K has a positive maximum at p along the intersection curve between
the surface and plane {y = αz}.

3 Practical Detection of Ridges and Ravines

Consider a range data (depth field) defined by a height function z = R(x, y).
Let kmax and kmin (kmax > kmin) be the principal curvatures of the surface
z = R(x, y), n(x, y) be the downward unit normal, and vmax and vmin be the
projections of the associated principal directions tmax and tmin onto the xy-
plane.

In order to decide whether kmax takes a maximum along the intersection
curve between the surface and vertical plane 〈vmax,n〉 at a grid vertex p we can
adopt a standard technique used for edge detection [29], see Fig. 2. The principal
curvature kmax at q1 and q2 can be estimated by bilinear interpolations between
the values of kmax at p1, p2 and p3, p4, respectively.
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Fig. 2. The principal curvatures at q1 and q2 are estimated by bilinear interpolations

between the curvature values at p1, p2 and p3, p4, respectively

A simple approach taken in [37] consists of comparing kmax(p) with kmax(q1)
and kmax(q2) and determines the ridges’ vertices as the points where kmax attains
a positive maximum in the direction of vmax. However our goal here is to test at
p whether kmax attains a positive maximum on the curvature line corresponding
to tmax.

Let ez = (0, 0, 1) be the unit vector defining vertical direction z. For a surface
point p let us define α such that

n · ez =
1√

1 + α2
.

As shown in the previous section, in order to determine whether kmax takes
a maximum on the curvature line corresponding to tmax we have to compare
K(p) = kmax(p) with K(q1) and K(q2), where

K(q) = kmax(q) +
C

2
(|p − q|2 + |R(p) − R(q)|2) . (7)

Here

C = −α kmax(p)
∂kmax

∂tmin
(p) +

1
kmax(p) − kmin(p)

[
∂kmax

∂tmin
(p)
]2

.

To estimate the derivative of kmax along tmin at p we set v = vmin in Fig. 2,
employ the bilinear interpolation to estimate kmax(q1) and kmax(q2), and then
use a standard finite difference scheme with three points q1, p, and q2.

Now let us set v = vmax in Fig. 2. We mark grid vertex p as a ridge vertex if

K(p) > K(q1), K(p) > K(q2), and kmax(p) > T,

where T is a positive threshold.
We use hysteresis thresholding [38] to remove unessential ridge and ravine

vertices and keep the ridge and ravine vertices connected as much as possible.
Consider the set R of grid vertices where kmax > 0. Let us call the value of kmax

at a vertex from R the ridge-strength of that vertex. We choose two thresholds
Tlo and Thi, Thi > Tlo > 0, at the 30th and 60th percentiles of the ridge-strength

1

2

1

2

3

4

v

p
p

p

p

p

q

q
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Fig. 3. Left: a synthetic range image representing a surface with sharp edges. Middle:

sharp edges (ridges and ravines) are detected using K(q). Right: kmax(q) is used instead

of K(q). For both the results the same thresholds and number of smoothing iterations

were used

data for R, i.e., the 30th percentile value is chosen so that for 30 percent of the
vertices from R, kmax is below that value. We keep a chain of connected ridge
vertices with kmax > Tlo if kmax > Thi for at least one grid vertex in the chain.

Surprisingly, although computing K(q) according to (7) involves an estima-
tion of third-order surface derivatives, using K(q) instead of kmax(q) leads not
only to a coordinate-independent computational procedure but also often pro-
vides with a better detection of sharp features, as seen in Fig. 3.

Let us point out again that our goal here does not consist of processing geo-
metrically simple shapes with sharp edges like those shown in Fig. 3. Segmenting
such shapes can be effectively done by methods discussed in [33, 34], see also ref-
erences therein.

4 Smoothing Range Data

As we noted before, a robust detection of the ridges and ravines requires a
sophisticated smoothing procedure. In this section, we develop an automatic
smoothing procedure based on a nonlinear diffusion of the range data normals.
Fig. 4 demonstrates how important preliminary smoothing is.

Smoothing by repeated local averaging (diffusion) is a popular image pro-
cessing technique. Consider a grey-scale image given by its intensity function
z = R(x, y). Image smoothing by repeated local averaging has the form

I(x, y, n + 1) =
∑

I(x + i, y + j, n)w(x + i, y + j, n)∑
w(x + i, y + j, n)

, (8)

where I(x, y, 0) = I(x, y), {w(x, y, n)} are positive weights which may vary from
pixel to pixel and change during the iterative averaging procedure (8), and the
summation is taken over a local neighborhood of (x, y) pixel.

If all weights {w} in (8) are equal, the image is blurred and image edges, sets
of pixels where the image gradient is large, are destroyed. If the weights in (8)
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Fig. 4. Ridges (blue) and ravines (red) detected on a complex range image. Left: no

preliminary smoothing was done. Right: nonlinear diffusion of normals was used for

preliminary smoothing

are chosen adaptively: they are small at those pixels where the image gradient
is large, then (8) takes into account only pixels with nearly the same intensity
values and edges are not destroyed.

This idea of adaptive image averaging was developed by Saint-Marc and
Medioni [39] and can be considered as a simplification of the Perona and Malik
nonlinear diffusion approach [40]. Saint-Marc and Medioni [39] proposed also to
apply adaptive smoothing to the image derivatives in order to achieve a robust
detection of curvature features in range images. Unfortunately Saint-Marc and
Medioni filtering schemes are not invariant under 3D rotations and, therefore,
are not appropriate for the detection of rotation-invariant features.

The smoothing procedure presented below adapts the Saint-Marc and Medioni
approach to smoothing the field of surface normals. In contrast to similar schemes
[41] our procedure involves no user-specified parameters except the number of
smoothing iterations.

The downward unit normal of z = R(x, y) is given by

n(x, y) = [n1, n2, n3] =
[Rx(x, y), Ry(x, y),−1]√
1 + Rx(x, y)2 + Ry(x, y)2

.

Notice that the partial derivatives of range data z = R(x, y) are recovered from
the field of normals

Rx(x, y) = − n1(x, y)
n3(x, y)

and Ry(x, y) = − n2(x, y)
n3(x, y)

.

Let P (x, y, n) and Q(x, y, n) approximate the range data derivatives Rx(x, y),
Ry(x, y) after n smoothing iterations. The Gaussian and mean curvatures can
be approximated by
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KG =
PxQy − PyQx

(1 + P 2 + Q2)2
, (9)

Km =
(1 + P 2)Px − PQ(Py + Qx) + (1 + Q2)Qy

2(1 + P 2 + Q2)3/2
. (10)

The smoothed principal curvatures are now given by

kmax = Km +
√

K2
m − KG and kmin = Km −

√
K2

m − KG.

For every grid vertex (x, y) let us define its weight by

w(x, y, n) = exp
{−σ

2
[
k2
max(x, y, n) + k2

min(x, y, n)
]}

.

Here σ > 0 controls which ridges are preserved and which are blurred.
In contrast to standard general nonlinear diffusion schemes [40, 39] we allow

σ to vary from vertex to vertex: σ = σ(x, y). To determine σ(x, y) automatically
for a grid vertex (x, y) we estimate the directional curvatures kij from (x, y) to
its eight nearest neighbors {(x + i, y + j) : −1 ≤ i, j ≤ 1}. Let ϕij be the angle
between n(x + i, y + j) and n(x, y), we set

kij = ϕij/dij , dij =
√

i2 + j2 + [R(x + i, y + j) − R(x, y)]2.

Here dij is the distance between to surface points P0 = [x, y,R(x, y)] and Pij =
[x + i, y + j, R(x + i, y + j)] and kij estimates the directional curvature in the
direction P0Pij . We choose σ(x, y) such that 20% of {|kij |} are below σ(x, y)
and 80% are above. According to our experiments, the 20% threshold works
well.

Consider the following discrete vector-valued diffusion process

m(x, y, n + 1) =
∑

m(x + i, y + j, n)w(x + i, y + j, n)∑
w(x + i, y + j, n)

,

m(x, y, 0) = n(x, y),

where the summations are taken over a 3 by 3 square neighborhood of (x, y) grid
vertex. The next approximations of the image derivatives are now computed by

P (x, y, n + 1) = −m1(x, y, n + 1)/m3(x, y, n + 1),
Q(x, y, n + 1) = −m2(x, y, n + 1)/m3(x, y, n + 1).

After a number of smoothing iterations, we estimate the Gaussian and mean
curvatures via (9) and (10), respectively. Then the principal curvatures are com-
puted. The coefficients of the first and second fundamental forms are estimated
by

E = 1 + P 2, F = PQ G = 1 + Q2,

L =
Px√

1 + P 2 + Q2
, M =

Py + Qx

2
√

1 + P 2 + Q2
, N =

Qy√
1 + P 2 + Q2

,
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Fig. 5. Ridges and ravines detected on range images of a frog (top) and lobster (bot-

tom) models. For each model, the images were made from three different positions

respectively, and computation of the projections vmax and vmin of the principal
directions onto the image plane is straightforward.

According to our numerical experiments, five iterations produce a good
smoothing effect. For all range images presented in this paper we use five it-
erations of the above smoothing procedure.

5 Discussion and Conclusion

In the paper, we have combined methods of classical differential geometry with
modern image processing techniques and developed a coordinate-independent
computational procedure for detecting salient extrema of the principal curva-
tures, the ridges and ravines, in range data.

Fig. 5 demonstrates the ridges and ravines detected on range data gener-
ated by generated by a laser scanner. Geometrically and perceptually important
features of two complex 3D models are well detected. Also one can find small
differences in the ridge and ravine patterns in range images made from differ-
ent positions, we believe that the developed technique can be used for shape
matching, quality evaluation, and recognition purposes.

Our method does not include post-processing filtering. The post-processing
filtering schemes proposed in [7, 12] for improving connectivity of curvature ex-
trema networks can be easily combined with the approach developed in this
paper.
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Similar to many other iterative image filtering schemes, our nonlinear image
diffusion process may change positions of image features slightly. We think that
after a proper modification, bilateral filtering [42, 43] and similar non-iterative
adaptive image denoising techniques are capable to deliver better filtering results.

Acknowledgments. The range data used in this paper are courtesy of the
Ohio State University and University of Bologna. We would like to thank the
anonymous reviewers of this paper for their valuable and constructive comments.
Thanks to Yutaka Ohtake for fruitful discussions. The research of the first author
is supported in part by AIM@SHAPE, a Network of Excellence project (506766)
within EU’s Sixth Framework Programme.

References

1. Gullstrand, A.: Zur Kenntnis der Kreispunkte. Acta Mathematica 29 (1904) 59–
100

2. Ramsay, J.G.: Folding and Fracturing of Rocks. McGraw Hill (1967)

3. Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18 (1985) 65–96

4. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for
conveying shape. ACM Transactions on Graphics 22 (2003) 848–855 Proceedings
of ACM SIGGRAPH 2003.

5. Hartmann, E.: On the curvature of curves and surfaces defined by normalforms.
Comput. Aided Geom. Design 16 (1999) 355–376

6. Hosaka, M.: Modeling of Curves and Surfaces in CAD/CAM. Springer, Berlin
(1992)

7. Ohtake, Y., Belyaev, A., Seidel, H.P.: Ridge-valley lines on meshes via implicit
surface fitting. ACM Transactions on Graphics 23 (2004) 609–612 Proceedings of
ACM SIGGRAPH 2004.

8. Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design
and Manufacturing. Springer, Heidelberg (2002)

9. Stylianou, G., Farin, G.: Crest lines extraction from 3D triangulated meshes. In
Farin, G., Hamann, B., Hagen, H., eds.: Hierarchical and Geometrical Methods in
Scientific Visualization, Springer (2003) 269–281

10. Stylianou, G., Farin, G.: Crest lines for surface segmentation and flattening. IEEE
Transactions on Visualization and Computer Graphics 10 (2004) 536–544

11. Watanabe, K., Belyaev, A.G.: Detection of salient curvature features on polygonal
surfaces. Computer Graphics Forum 20 (2001) 385–392 Eurographics 2001 issue.

12. Yoshizawa, S., Belyaev, A.G., Seidel, H.P.: Fast and robust detection of crest lines
on meshes. In: ACM Symposium on Solid and Physical Modeling 2005, MIT,
Cambridge, MA, USA (2005) To appear.

13. Hallinan, P.L., Gordon, G.G., Yuille, A.L., Giblin, P., Mumford, D.: Two- and
Tree-Dimensional Patterns of the Face. A K Peters (1999)

14. Eberly, D., Gardner, R., Morse, D., Pizer, S., Scharlach, C.: Ridges for image
analysis. J. Mathematical Imaging and Vision 4 (1994) 353–373

15. Monga, O., Armande, N., Montesinos, P.: Thin nets and crest lines: Application
to satellite data and medical images. Computer Vision and Image Understanding:
CVIU 67 (1997) 285–295



60 A. Belyaev and E. Anoshkina

16. Monga, O., Ayache, N., Sander, P.T.: From voxel to intrinsic surface features.
Image and Vision Computing 10 (1992) 403–417

17. Yuille, A.L.: Zero crossings on lines of curvature. Graphical Models and Image
Processing 45 (1989) 68–87

18. Kent, J.T., Mardia, K.V., West, J.: Ridge curves and shape analysis. In: The
British Machine Vision Conference 1996. (1996) 43–52

19. Little, J.J., Shi, P.: Structural lines, TINs and DEMs. Algorithmica, 30 (2001)
243–263

20. Pennec, X., Ayache, N., Thirion, J.P.: Landmark-based registration using fea-
tures identified through differential geometry. In Bankman, I.N., ed.: Handbook
of Medical Imaging. Academic Press (2000)

21. Belyaev, A.G., Anoshkina, E.V., Kunii, T.L.: Ridges, ravines, and singularities.
In: A.T. Fomenko, and T. L.Kunii, Topological Modeling for Visualization. Chap-
ter 18, Springer (1997) 375–383

22. Bruce, J.W., Giblin, P.J., Tari, F.: Ridges, crests and sub-parabolic lines of evolving
surfaces. Int. J. Computer Vision 18 (1996) 195–210

23. Bruce, J.W., Giblin, P.J., Tari, F.: Families of surfaces: focal sets, ridges and
umbilics. Math. Proc. Cambridge Philos. Soc. 125 (1999) 243–268

24. Cazals, F., Pouget, M.: Differential topology and geometry of smooth embedded
surfaces: selected topics. Computational Geometry and Applications (2005) To
appear.

25. Cazals, F., Pouget, M.: Topology driven algorithms for ridge extraction on meshes.
Rapport de Recherche RR-5526, INRIA (2005)

26. Koenderink, J.J.: Solid Shape. MIT Press (1990)
27. Porteous, I.R.: Geometric Differentiation for the Intelligence of Curves and Sur-

faces. Cambridge University Press, Cambridge (2nd Edition, 2001)
28. Yuille, A.L., Leyton, M.: 3D symmetry-curvature duality theorems. Graphical

Models and Image Processing 52 (1990) 124–140
29. Faugeras, O.: Three-Dimensional Computer Vision, Ch. 4: Edge Detection. MIT

Press (1993)
30. Belyaev, A.G., Ohtake, Y., Abe, K.: Detection of ridges and ravines on range

images and triangular meshes. In: Vision Geometry IX, Proc. SPIE 4117. (2000)
146–154

31. Ohtake, Y., Belyaev, A.G., Bogaevski, I.A.: Mesh regularization and adaptive
smoothing. Computer-Aided Design 33 (2001) 789–800

32. Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing
via anisotropic diffusion of normals. In: Proceedings of IEEE Visualization ’02.
(2002) 125–132

33. Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P., Bunke, H., Goldgof, D.,
Bowyer, K., Eggert, D., Fitzgibbon, A., Fisher, R.: An experimental comparison
of range image segmentation algorithms. IEEE Transactions on Pattern Analysis
and Machine Intelligence 18 (1996) 673–689

34. Lee, K.M., Meer, P., Park, R.H.: Robust adaptive segmentation of range images.
IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 200–
205

35. Berry, M.V., Hannay, J.H.: Umbilic points on gaussian random surfaces. J. Phys.
A 10 (1977) 1809–1821

36. Maekawa, T., Wolter, F.E., Patrikalakis, N.M.: Umbilics and lines of curvature for
shape interrogation. Computer Aided Geometric Design 13 (1996) 133–161

37. Gordon, G.G.: Face recognition from depth maps and surface curvature. In:
Geometric Methods in Computer Vision, Proc. SPIE 1570. (1991) 234–247



Detection of Surface Creases in Range Data 61

38. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8 (1986) 679–698

39. Saint-Marc, P., Chen, J.S., Medioni, G.: Adaptive smooting: A general tool for
early vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 13
(1991) 514–529

40. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 629–
638

41. Tasdizen, T., Whitaker, R.: Anisotropic diffusion of surface normals for feature
preserving surface reconstruction. In: Fourth International Conference on 3-D
Digital Imaging and Modeling. (2003) 353–360

42. Smith, S.M., Brady, J.M.: SUSAN – a new approach to low level image processing.
International Journal of Computer Vision 23 (1997) 45–78

43. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV
’98: Proceedings of the Sixth International Conference on Computer Vision. (1998)
839–846



Efficient Linear System Solvers
for Mesh Processing

Mario Botsch, David Bommes, and Leif Kobbelt

Computer Graphics Group,
RWTH Aachen Technical University, Germany

{botsch, bommes, kobbelt}@cs.rwth-aachen.de

Abstract. The use of polygonal mesh representations for freeform ge-
ometry enables the formulation of many important geometry processing
tasks as the solution of one or several linear systems. As a consequence,
the key ingredient for efficient algorithms is a fast procedure to solve lin-
ear systems. A large class of standard problems can further be shown to
lead more specifically to sparse, symmetric, and positive definite systems,
that allow for a numerically robust and efficient solution.

In this paper we discuss and evaluate the use of sparse direct solvers
for such kind of systems in geometry processing applications, since in
our experiments they turned out to be superior even to highly optimized
multigrid methods, but at the same time were considerably easier to
use and implement. Although the methods we present are well known in
the field of high performance computing, we observed that they are in
practice surprisingly rarely applied to geometry processing problems.

1 Introduction

In the field of geometry processing suitable data structures that enable the im-
plementation of efficient algorithms are getting more and more important [1],
especially since the complexity of the geometric models to be processed is grow-
ing much faster than the steadily increasing computational power and available
memory of today’s PC systems. Typical examples are higher order spline surfaces
f (u, v) =

∑
i ciΦi (u, v), represented as a weighted average of control points ci,

or piecewise linear triangle meshes M obtained from sampling a surface at the
mesh vertices xi = f (ui, vi).

Using finite differences or finite elements, many standard geometry processing
problems, like for instance PDEs on or of surfaces, can be formulated as a set of
(linear or non-linear) equations in either the control points ci of a spline surface
or the vertex positions X = (x1, . . . ,xn)T ∈ IRn×3 of an approximating triangle
mesh.

A common technique to efficiently handle non-linear problems is their decom-
position into a sequence of linear ones, like, e.g., the (semi-)implicit integration
of non-linear geometric flows by solving a linear equation in each time step [1] or
the Levenberg-Marquardt method for non-linear optimization [2]. Similarly, con-
tinuous energy functionals E (f) =

∫
Ω

e (f ,x) dx are approximated by quadratic

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 62–83, 2005.
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forms E (X) = XT QX, such that their minimizer surfaces can efficiently be
derived by solving the linear systems QX = B, assuming proper boundary con-
straints B [3]. These examples motivate why a large class of geometric problems
comes down to the solution of one or several linear systems. As a consequence,
high performance linear system solvers are of major importance for the develop-
ment of efficient algorithms.

Since differential surface properties are defined locally, the discretization of
PDEs typically leads to sparse linear systems, in which the ith row contains non-
zeros only in those entries corresponding to the geodesic or topological neighbor-
hood of vertex xi. We are therefore interested in solvers that exploit this sparsity
in order to minimize both memory consumption and computation times.

Within the class of sparse linear systems, we will further concentrate on
symmetric positive definite (so-called spd) matrices, since exploiting their spe-
cial structure allows for the most efficient and most robust implementations.
Such systems frequently occur when minimizing energy functionals of the form
E (X) = XT QX with an spd matrix Q. A very popular source of spd systems
is the discrete Laplace-Beltrami operator ΔS [4], which is closely related to fre-
quencies of scalar fields defined on a two-manifold surface S [5]. This operator
has various applications in surface smoothing [1, 5], surface parameterization
[6, 7], variational surface modeling [8, 9, 10, 11], mesh morphing [12, 13, 14], and
shape analysis [15]. Besides from surfaces, the standard Laplace operator is for
instance also used in image editing [16] and fluid simulation [17]. Finally, all lin-
ear problems Ax = b that cannot be solved exactly and hence are approximated
in the least squares sense by using the normal equations AT Ax = AT b also re-
sult in spd linear systems [18]. This large but still incomplete list of applications
involving spd systems legitimates focusing on this special class of problems.

Another important point to be considered is whether the linear systems are
solved just once or several times, e.g., for different right-hand sides. Since most
geometric problems are separable w.r.t. the coordinate components, they can be
solved component-wise for x, y, and z using the same system matrix. Multiple
right-hand side problems also naturally occur in applications where the user
interactively changes boundary constraints, e.g., in surface editing.

There is another situation for solving a sequence of similar systems: when
decomposing a non-linear problem into a sequence of linear systems, the values
of the matrix entries usually change in each iteration, but its structure, i.e., the
pattern of non-zero elements {(i, j) |Aij �= 0}, stays the same, because it usually
depends on the mesh connectivity, only which does not change. In both cases
— solving for multiple right-hand sides or matrices of identical structure — this
additional information should be exploited as much as possible, e.g., by investing
pre-computation time in some kind of factorization or preconditioning.

In this paper we propose the use of direct solvers for the sparse spd systems,
as they arise from typical computer graphics and geometry processing problems.
We mainly focus on Laplacian or bi-Laplacian systems for triangle meshes, how-
ever, analogous results hold for systems of similar structure. The size of the linear
systems corresponds to the number of vertices in the mesh, which, in our context,
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usually is of the order of 104 or 105. Due to the local definition of the Laplace
operator, the resulting matrices are highly sparse and in the average exhibit 7 or
19 non-zero entries per row for Laplacian or bi-Laplacian systems, respectively.
Since in many applications these systems have to be solved for multiple right-
hand sides, the sparse factorizations of direct solvers allow for highly efficient
implementations. After reviewing the commonly known and widely used direct
and iterative solvers, we introduce sparse direct solvers and point out their ad-
vantageous properties in Sect. 2. After comparing the different solvers in Sect. 3
we finally present a list of applications that greatly benefit from sparse direct
solvers in Sect. 4.

2 Linear System Solvers

We describe and compare the following classes of solvers: dense direct solvers, it-
erative solvers, multigrid solvers, and finally sparse direct solvers. For the follow-
ing discussion we restrict to sparse spd problems Ax = b, with A = AT ∈ IRn×n,
x,b ∈ IRn, and denote by x∗ the exact solution A−1b. For completeness, the
general case of a non-symmetric indefinite system is outlined in Sect. 2.5. More
elaborate surveys on how to efficiently solve general large linear systems can be
found in the books [19, 20].

2.1 Dense Direct Solvers

Direct linear system solvers are based on a factorization of the matrix A into
matrices of simpler structure, e.g., triangular, diagonal, or orthogonal matrices.
This structure allows for an efficient solution of the factorized system. As a
consequence, once the factorization is computed, it can be used to solve the
linear system for several different right-hand sides.

The most commonly used examples for general matrices A are, in the order of
increasing numerical robustness and computational effort, the LU factorization,
QR factorization, or the singular value decomposition. However, in the special
case of a spd matrix the Cholesky factorization A = LLT , with L denoting a
lower triangular matrix, should be employed, since it exploits the symmetry of
the matrix and can additionally be shown to be numerically very robust due to
the positive definiteness of the matrix A [21].

On the downside, the asymptotic time complexity of all dense direct methods
is O(n3) for the factorization and O(n2) for solving the system based on the pre-
computed factorization. Since for the problems we are targeting at, n can be of
the order of 105, the total cubic complexity of dense direct methods is prohibitive.
Even if the matrix A is highly sparse, the näive direct methods enumerated here
are not designed to exploit this structure, hence the factors are dense matrices
in general (cf. Fig. 2, top row, on page 70).

2.2 Iterative Solvers

In contrast to dense direct solvers, iterative methods are able to exploit the spar-
sity of the matrix A. Since they additionally allow for a simple implementation
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[22], iterative solvers are the de-facto standard method for solving sparse linear
systems in the context of geometric problems. A detailed overview of iterative
methods with precious implementation hints can be found in [23, 24].

Iterative methods compute a converging sequence x(0),x(1), . . . ,x(i) of ap-
proximations to the solution x∗ of the linear system, i.e., limi→∞ x(i) = x∗. In
practice, however, one has to find a suitable criterion to stop the iteration as
soon as the current solution x(i) is accurate enough, i.e., if the norm of the error
e(i) := x∗ − x(i) is less than some ε. Since the solution x∗ is not known before-
hand, the error has to be estimated by considering the residual r(i) := Ax(i)−b.
These two are related by the residual equations Ae(i) = r(i), leading to an upper
bound

∥∥e(i)
∥∥ ≤ ∥∥A−1

∥∥ · ∥∥r(i)
∥∥, i.e., the norm of the inverse matrix has to be

estimated or approximated in some way (see [23]).
The simplest examples for iterative solvers are the Jacobi and Gauss-Seidel

methods. They belong to the class of static iterative methods, whose update
steps can be written as x(i+1) = Mx(i) +c with constant M and c, such that the
solution x∗ is the fixed point of this iteration. An analysis of the eigenstructure
of the update matrices M reveals that both methods rapidly remove the high
frequencies of the error, but the iteration stalls if the error is a smooth function.
By consequence, the convergence to the exact solution x∗ is usually too slow in
practice. As an additional drawback these methods only converge for a restricted
set of matrices, e.g., for diagonally dominant ones.

Non-stationary iterative solvers are more powerful, and for spd matrices the
method of conjugate gradients (CG) [25, 21] is suited best, since it provides
guaranteed convergence with monotonically decreasing error. For a spd matrix
A the solution of Ax = b is equivalent to the minimization of the quadratic form

φ (x) :=
1
2
xT Ax − bT x.

The CG method successively minimizes this functional along a set of linearly
independent search directions p(i), such that

x(i) = argmin
{

φ (x)
∣∣∣x ∈ x0 + span

{
p(1), . . . ,p(i)

}}
.

Due to the nestedness of these spaces the error decreases monotonically, and
the exact solution x∗ ∈ IRn is found after at most n steps (neglecting rounding
errors). Minimizing φ by gradient descent results in inefficient zigzag paths in
steep valleys of φ, which correspond to strongly differing eigenvalues of A. In
order to cancel out the effect of A’s eigenvalues on the search directions pi,
those are chosen to be A-conjugate, i.e., orthogonal w.r.t. the scalar product
induced by A: pT

j Api = 0 for i �= j [26]. The computation of and minimization
along these optimal search directions can be performed efficiently and with a
constant memory consumption.

The complexity of each CG iteration is mainly determined by the matrix-
vector product Ax, which is of the order O(n) if the matrix is sparse. Given the
maximum number of n iterations, the total complexity is O(n2) in the worst
case, but it is usually better in practice.
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As the convergence rate mainly depends on the spectral properties of the ma-
trix A, a proper pre-conditioning scheme should be used to increase the efficiency
and robustness of the iterative scheme. This means that a slightly different sys-
tem Ãx̃ = b̃ is solved instead, with Ã = PAPT , x̃ = P−T x, b̃ = Pb, where
the regular pre-conditioning matrix P is chosen such that Ã is well conditioned
[21, 23]. However, the matrix P is restricted to have a simple structure, since an
additional linear system Pz = r has to be solved in each iteration of the solver.

The iterative conjugate gradients method manages to decrease the computa-
tional complexity from O(n3) to O(n2) for sparse matrices, but this is still too
slow to compute exact (or sufficiently accurate) solutions of large linear systems,
in particular if the systems are numerically ill-conditioned, like for instance the
higher order Laplacian systems used in variational surface modeling [8, 9].

2.3 Multigrid Iterative Solvers

As mentioned in the last section, one characteristic problem of most iterative
solvers is that they are smoothers: they attenuate the high frequencies of the
error e(i) very fast, but their convergence stalls if the error is a smooth function.
This fact is exploited by multigrid methods, that build a fine-to-coarse hierarchy
{M = M0,M1, . . . ,Mk} of the computation domain M and solve the linear
system hierarchically from coarse to fine [27, 28].

After a few (pre-)smoothing iterations on the finest level M0 the high fre-
quencies of the error are removed and the solver becomes inefficient. However,
the remaining low frequency error e0 = x∗−x0 on M0 corresponds to higher fre-
quencies when restricted to the coarser level M1 and therefore can be removed
efficiently on M1. Hence the error is solved for using the residual equations
Ae1 = r1 on M1, where r1 = R0→1r0 is the residual on M0 transfered to
M1 by a restriction operator R0→1. The result is prolongated back to M0 by
e0 ← P1→0e1 and used to correct the current approximation: x0 ← x0 + e0.
Small high-frequency errors due to the prolongation are finally removed by a
few post-smoothing steps on M0. The recursive application of this two-level
approach to the whole hierarchy can be written as

Φi = Sμ Pi+1→i Φi+1 Ri→i+1 Sλ,

with λ and μ pre- and post-smoothing iterations, respectively. One recursive run
is known as a V-cycle iteration.

Another concept is the method of nested iterations, that exploits the fact that
iterative solvers are very efficient if the starting value is sufficiently close to the
actual solution. One starts by computing the exact solution on the coarsest level
Mk, which can be done efficiently since the system Akxk = bk corresponding to
the restriction to Mk is small. The prolongated solution Pk→k−1x∗

k is then used
as starting value for iterations on Mk−1, and this process is repeated until the
finest level M0 is reached and the solution x∗

0 = x∗ is computed.
The remaining question is how to iteratively solve on each level. The standard

method is to use one or two V-cycle iterations, leading to the so-called full
multigrid method. However, one can also use an iterative smoothing solver (e.g.,
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M0

M1

M2

M3

Fig. 1. A schematic comparison in terms of visited multigrid levels for V-cycle (left),

full multigrid with one V-cycle per level (center), and cascading multigrid (right). The

size of the dots represents the number of iterations on the respective level

Jacobi or CG) on each level and completely avoid V-cycles. In the latter case the
number of iterations mi on level i must not be constant, but instead has to be
chosen as mi = m γi to decrease exponentially from coarse to fine [29]. Besides
the easier implementation, the advantage of this cascading multigrid method is
that once a level is computed, it is not involved in further computations and can
be discarded. A comparison of the three methods in terms of visited multigrid
levels is given in Fig. 1.

Due to the logarithmic number of hierarchy levels k = O(log n) the full
multigrid method and the cascading multigrid method can both be shown to
have linear asymptotic complexity, as opposed to quadratic for non-hierarchical
iterative methods. However, they cannot exploit synergy for multiple right-hand
sides, which is why factorization-based approaches are clearly preferable in such
situations, as we will show in the next section.

Since in our case the discrete computational domain M is an irregular triangle
mesh instead of a regular 2D or 3D grid, the coarsening operator for building
the hierarchy is based on mesh decimation techniques [30, 31]. The shape of the
resulting triangles is important for numerical robustness, and the edge lengths
on the different levels should mimic the case of regular grids. Therefore the
decimation usually removes edges in the order of increasing lengths, such that
the hierarchy levels have uniform edge lengths and triangles of bounded aspect
ratio.

The simplification from one hierarchy level Mi to the next coarser one Mi+1

should additionally be restricted to remove a maximally independent set of ver-
tices, i.e., no two removed vertices vj , vl ∈ Mi \ Mi+1 are connected by an
edge ejl ∈ Mi. In [32] some more efficient alternatives to this standard Dobkin-
Kirkpatric hierarchy are discussed. In order to achieve higher performance, we
do not change the simple way the hierarchy is constructed, but instead solve
the linear system on every second or third level only, and use the prolongation
operator alone on all in-between levels.

The linear complexity of multi-grid methods allows for the highly efficient so-
lution even of very complex systems. However, the main problem of these solvers
is their quite involved implementation, since special care has to be taken for the
hierarchy building, for special multigrid pre-conditioners, and for the inter-level
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conversion by restriction and prolongation operators. A detailed overview of
these techniques is given in [32].

Additionally, the number of iterations per hierarchy level have to be chosen:
This includes the number of V-cycles and pre- and post-smoothing iterations per
V-cycle for the full multigrid method, or m and γ for the cascading multigrid
approach. These numbers have to be chosen either by heuristic or experience,
since they not only depend on the problem (structure of A), but also on its
specific instance (values of A). Nevertheless, if iterative solvers are to be used,
multigrid methods are the only way to achieve acceptable computing times for
solving large systems, as has been shown in [8, 33, 32].

2.4 Sparse Direct Solvers

The use of direct solvers for large sparse linear systems is often neglected, since
näive direct methods have complexity O(n3), as described above. The problem
is that even when the matrix A is sparse, the factorization will not preserve
this sparsity, such that the resulting Cholesky factor is a dense lower triangular
matrix (cf. Fig. 2, top row).

However, an analysis of the factorization process shows that a band-limitation
of the matrix A will be preserved. Following [34], we define the bandwidth β (A)
in terms of the bandwidth of its ith row

β (A) := max
1≤i≤n

{βi (A)} with βi (A) := i − min
1≤j≤i

{j | Aij �= 0} .

If the matrix A has bandwidth β (A) then so has its factor L. An even stricter
bound is that also the so-called envelope or profile

Env(A) := {(i, j) | 0 < i − j ≤ βi (A)}

is preserved, i.e., no additional non-zeros (so-called fill-in elements) are generated
outside the envelope.

This additional structure can be exploited in both the factorization and the
solution process, such that their complexities reduce from O(n3) and O(n2) to
linear complexity in the number of non-zeros nz(A) of A [34]. Since usually
nz(A) = O(n), this is the same linear complexity as for multigrid solvers. How-
ever, in the graphics-related examples we will show in the following sections,
sparse direct method turned out to be more efficient compared to multigrid
methods, in particular for multiple right-hand side problems.

Since we assume the matrices to be sparse, but not band-limited or profile-
optimized, the first step is to minimize the matrix envelope, which can be
achieved by symmetric row and column permutations A �→ PT AP using a
permutation matrix P , i.e., a re-ordering of the mesh vertices. Although this
re-ordering problem is NP complete, several good heuristics exist, of which we
will present the most commonly used in the following. All of these methods work
on the undirected adjacency graph Adj(A) corresponding to the non-zeros of A,
i.e., two nodes i, j ∈ {1, . . . , n} are connected by an edge if and only if Aij �= 0.
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The standard method for envelope minimization is the Cuthill-McKee algo-
rithm [35], that picks a start node and renumbers all its neighbors by travers-
ing the adjacency graph in a breadth-first manner, using a greedy selection in
the order of increasing valence. It has further been proven in [36] that revert-
ing this permutation leads to better re-orderings, such that usually the reverse
Cuthill-McKee method (RCMK) is employed. The result PT AP of this matrix
re-ordering is depicted in the second row of Fig. 2.

Since no special pivoting is required for the Cholesky factorization, the non-
zero structure of its matrix factor L can symbolically be derived from the non-
zero structure of the matrix A alone, or, equivalently, from its adjacency graph.
The graph interpretation of the Cholesky factorization is to successively elimi-
nate the node with the lowest index from the graph and connect all its immediate
neighbors mutually to each other. The additional edges eij generated in this so-
called elimination graph correspond to the fill-in elements Lij �= 0 = Aij .

In order to minimize fill-in the minimum degree algorithm (MD) and its
variants [37, 38] remove the nodes with smallest valence first from the elimination
graph, since this causes the least number of additional pairwise connections.
Many efficiency optimizations of this basic method exist, the most prominent of
which is the super-nodal approach: instead of removing eliminated nodes from
the graph, neighboring eliminated nodes are clustered to so-called super-nodes,
allowing for more efficient graph updates. The resulting minimum degree re-
orderings do not lead to some kind of a band-structure (which implicitly limits
fill-in), but instead directly minimize the fill-in of L (cf. Fig. 2, third row).

The last class of re-ordering approaches is based on graph partitioning. Con-
sider a matrix A whose adjacency graph has m separate connected components.
Such a matrix can be restructured to a block-diagonal matrix of m blocks, such
that the factorization can be performed on each block individually. If the adja-
cency graph is connected, a small subset S of nodes, whose elimination would
separate the graph into two components of roughly equal size, is found by one of
several heuristics [39]. This graph-partitioning results in a matrix consisting of
two large diagonal blocks (two connected components) and |S| rows representing
their connection (separator S). Recursively repeating this process leads to the
method of nested dissection (ND), leading to matrices of the typical block struc-
ture shown in the bottom row of Fig. 2. Besides the obvious fill-in reduction,
these systems also allow for easy parallelization of both the factorization and
the solution.

For the comparison of the different matrix re-ordering strategies a rather
small matrix was used in Fig. 2 to allow for clearer visualization. On an analogous
5k × 5k matrix the number of non-zeros nz(L) decreases from 2.3M to 451k,
106k, and 104k by applying the RCMK, MD, and ND method, respectively. The
timings to obtain those re-orderings are 17ms, 12ms, and 38ms. It can further
be observed that for larger systems the nested dissection method [39] generally
leads to the best results.

One important advantage of the Cholesky factorization is that the non-zero
structure of the factor L can be determined from Adj(A) without any numerical
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Fig. 2. The top row shows the non-zero pattern of a typical 500 × 500 matrix A

and its Cholesky factor L, corresponding to a Laplacian system on a triangle mesh.

Although A is highly sparse (3502 non-zeros), the factor L is dense (36k non-zeros).

The reverse Cuthill-McKee algorithm minimizes the envelope of the matrix, resulting

in 14k non-zeros of L (2nd row). The minimum degree ordering avoids fill-in during

the factorization, which decreases the number of non-zeros to 6203 (3rd row). The last

row shows the result of a nested dissection method (7142 non-zeros), that allows for

parallelization due to its block structure
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computations. This allows us to setup an efficient static data structure for L
before the actual numerical factorization, which is therefore called symbolic fac-
torization. Since suitable data structures and proper memory layout are crucial
for efficient numerical computations, this two-step factorization process allows
for significant optimizations.

Analogously to the dense direct solvers, the factorization can be exploited
to solve for different right-hand sides in a very efficient manner. In addition to
this, whenever the matrix A is changed, such that its non-zero structure Adj(A)
is preserved, then the matrix re-ordering as well as the symbolic factorization
can obviously be re-used. Solving the modified system therefore only requires to
re-compute the numerical factorization and performing the back-substitution,
which typically saves about 50% of the total computation time for solving the
modified system. As we will show in Sect. 4, this allows for an efficient implemen-
tation of a large class of algorithms that decompose a non-linear problem into a
sequence of similar linear ones, like for instance the implicit fairing approach [1]
or the Levenberg-Marquardt optimization for non-linear problems [22, 2].

Another advantage of sparse direct methods is that no additional parameters
have to be chosen in a problem-dependent manner, as for instance the different
numbers of iterations for the multigrid solvers. The only degree of freedom is
the matrix re-ordering, but this only depends on the symbolic structure of the
problem and therefore can be chosen quite easily. For more details and imple-
mentation notes the reader is referred to the book of George and Liu [34]; a
highly efficient implementation is publicly available in the TAUCS library [40].

2.5 Non-symmetric Indefinite Systems

When the assumptions about the symmetry and positive definiteness of the
matrix A are not satisfied, optimal methods like the Cholesky factorization or
conjugate gradients cannot be used. In this section we shortly outline which
techniques are applicable instead.

From within the class of iterative solvers, the bi-conjugate gradients algo-
rithm (BiCG) is typically used as a replacement for the conjugate gradients
method [22]. Although working well in most cases, BiCG does not provide any
theoretical convergence guarantees and has a very irregular non-monotonically
decreasing residual error for ill-conditioned systems. On the other hand, the
GMRES method converges monotonically with guarantees, but its computa-
tional cost and memory consumption increase in each iteration [21]. As a good
trade-off, the stabilized Bi-CGSTAB [23] represents a mixture between the effi-
cient BiCG and the smoothly converging GMRES; it provides a much smoother
convergence and is reasonably efficient and easy to implement.

When considering dense direct solvers, the Cholesky factorization cannot be
used for general matrices. Therefore the LU factorization is typically employed
(instead of QR or SVD), since it is similarly efficient and also extends well to
sparse direct methods. However, (partial) row and column pivoting is essential
for the numerical robustness of the LU factorization, since this avoids zeros on
the diagonal during the factorization process.
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Similarly to the Cholesky factorization, it can be shown that the LU factor-
ization also preserves the band-width and envelope of the matrix A. Techniques
like the minimum degree algorithm generalize to non-symmetric matrices as well.
But as for dense matrices, the banded LU factorization relies on partial pivoting
in order to guarantee numerical stability. In this case, two competing types of
permutations are involved: symbolic permutations for matrix re-ordering and
pivoting permutations ensuring numerical robustness. As these permutations
cannot be handled separately, a trade-off between stability and fill-in minimiza-
tion has to be found, resulting in a significantly more complex factorization
process.

As a consequence, the re-ordering depends on the numerical values of the
matrix entries, such that an exact symbolic factorization like in the Cholesky
case is not possible. In order to nevertheless be able to setup a static data
structure, a more conservative envelope is typically used, such that pivoting
within this structure is still possible. A highly efficient implementation of a
sparse LU factorization is provided by the SuperLU library [41].

3 Laplace Systems

Most of the example applications shown in Sect. 4 require the solution of linear
Laplacian systems, therefore we analyze these matrices and compare different
solvers for their solution. Although we focus on Laplacian systems, we will see
in Sect. 4 that analogous results hold for matrices of similar structure, like for
instance sparse least squares systems.

The discrete Laplace-Beltrami operator ΔSf of a scalar-valued function f on
the manifold S [1, 4, 6] is defined for a center vertex vi as a linear combination
with its one-ring neighbors vj ∈ N1 (vi):

ΔSf (vi) =
2

A (vi)

∑
vj∈N1(vi)

(cotαij + cotβij) (f (vj) − f (vi)) ,

where αij = � (xi,xj−1,xj), βij = � (xi,xj+1,xj), and xi represents the 3D po-
sition of the mesh vertex vi. The normalization factor A (vi) denotes the Voronoi
area around the vertex vi [4]. In matrix notation the vector of the Laplacians of
f (vi) can be written as⎛⎜⎜⎝

...
ΔSf (vi)

...

⎞⎟⎟⎠ = D · M ·

⎛⎜⎜⎝
...

f (vi)
...

⎞⎟⎟⎠ ,

where D is a diagonal matrix with normalization factors Dii = 2/A (vi), and M
is a symmetric matrix of cotangent weights with

Mij =

⎧⎨⎩
0 i �= j , vj �∈ N1 (vi)

cotαij + cotβij , i �= j , vj ∈ N1 (vi)
−∑vj∈N1(vi)

(cotαij + cotβij) i = j
.
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Since the Laplacian of a vertex vi is defined locally in terms of its one-ring
neighbors, the matrix M is highly sparse and has non-zeros in the ith row only
on the diagonal and in those columns corresponding to vi’s one-ring neighbors
N1 (vi). Due to the Euler characteristic for triangle meshes, this results in about
7 non-zeros per row in average. Analogously, higher order Laplacian matrices
Δk

S have non-zeros for the k-ring neighbors Nk (vi), which are, e.g., about 19 for
bi-Laplacian systems (k = 2).

For a closed mesh without boundaries, Laplacian systems Δk
S x = b of any

order k can be turned into symmetric ones by moving the first diagonal matrix
factor D to the right-hand side:

M (DM)k−1 x = D−1b.

Boundary constraints are typically employed by restricting the positions of cer-
tain vertices, which corresponds to eliminating their respective rows and columns
of the left-hand side and hence keeps the matrix symmetric. The case of meshes
with boundaries is equivalent to a patch bounded by constrained vertices and
therefore also results in a symmetric matrix. Pinkall and Polthier [6] additionally
showed that this system is positive definite, such that we can apply the efficient
solvers presented in the last section.

In the following we compare the different kinds of linear system solvers for
Laplacian as well as for bi-Laplacian systems. All timings we report in this and
the next section were taken on a 3.0GHz Pentium4 running Linux. The iterative
solver from the gmm++ library [42] is based on the conjugate gradients method
and uses an incomplete LDLT factorization as preconditioner. Our cascading
multigrid solver performs preconditioned conjugate gradient iterations on each
hierarchy level and additionally exploits SSE instructions in order to solve for
up to four right-hand sides simultaneously. The direct solver of the TAUCS
library [40] employs nested dissection re-ordering and a sparse complete Cholesky
factorization. Although our linear systems are symmetric, we also compare to
the popular SuperLU solver [41], which is based on a sparse LU factorization,
for the sake of completeness.

Iterative solvers have the advantage over direct ones that the computation
can be stopped as soon as a sufficiently small error is reached, which — in typi-
cal computer graphics applications — does not have to be the highest possible
precision. In contrast, direct methods always compute the exact solution up to
numerical round-off errors, which in our application examples actually was more
precise than required. The stopping criteria of the iterative methods have there-
fore been chosen to yield sufficient results, such that their quality is comparable
to that achieved by direct solvers. The resulting residual errors were allowed to
be about one order of magnitude larger than those of the direct solvers. While
the latter achieved an average residual error of 10−7 and 10−5 for Laplacian and
bi-Laplacian systems, respectively, the iterative solvers were stopped at an error
of 10−6 and 10−4.

Table 1 shows timings for the different solvers on Laplacian systems ΔSX =
B of 10k to 50k and 100k to 500k unknowns, i.e., free vertices X. For each solver
three columns of timings are given:
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Setup: Computing the cotangent weights for the Laplace discretization and
building the matrix structure (done per-level for the multigrid solver).

Precomputation: Preconditioning (iterative), building the hierarchy by mesh
decimation (multigrid), matrix re-ordering and sparse factorization (direct).

Solution: Solving the linear system for three different right-hand sides corre-
sponding to the x, y, and z components of the free vertices X.

Due to its effective preconditioner, which computes a sparse incomplete fac-
torization, the iterative solver scales almost linearly with the system complexity.
However, for large and thus ill-conditioned systems it breaks down. Notice that
without preconditioning the solver would not converge for the larger systems.

The experiments clearly verify the linear complexity of multigrid and sparse
direct solvers. Once their sparse factorizations are pre-computed, the compu-
tational costs for actually solving the system are about the same for the LU
and Cholesky solver. However, they differ significantly in the factorization per-
formance, because the numerically more robust Cholesky factorization allows
for more optimizations, whereas pivoting is required for the LU factorization to
guarantee robustness. This is the reason for the break-down of the LU solver,
such that the multigrid solver is more efficient in terms of total computation
time for the larger systems.

Interactive applications often require to solve the same linear system for sev-
eral right-hand sides (e.g. once per frame), which typically reflects the change
of boundary constraints due to user interaction. For such problems the solution
times, i.e., the third columns of the timings, are more relevant, as they corre-
spond to the per-frame computational costs. Here the precomputation of a sparse
factorization pays off and the direct solvers are clearly superior to the multigrid
method.

Table 2 shows the same experiments for bi-Laplacian systems Δ2
SX = B of

the same complexity. In this case, the matrix setup is more complex, the matrix
condition number is squared, and the sparsity decreases from 7 to 19 non-zeros
per row.

Due to the higher condition number the iterative solver takes much longer
and even fails to converge on large systems. In contrast, the multigrid solver
converges robustly without numerical problems; notice that constructing the
multigrid hierarchy is almost the same as for the Laplacian system (up to one
more ring of boundary constraints). The computational costs required for the
sparse factorization are proportional to the increased number of non-zeros per
row. The LU factorization additionally has to incorporate pivoting for numerical
stability and failed for larger systems. In contrast, the Cholesky factorization
worked robustly in all our experiments.

If we focus on the solution times for the bi-Laplacian systems and compare
them to the Laplacian systems, we observe that the direct solver scales with the
sparsity of the matrix, while the number of iterations required for the multigrid
solver depends on the (squared) matrix condition. In our experiments it turned
out that the performance gap between multigrid and direct methods is even
larger for bi-Laplacian systems.
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Table 1. Comparison of different solvers for Laplacian systems ΔSX = B of 10k

to 50k and 100k to 500k free vertices X. The three timings for each solver represent

matrix setup, pre-computation, and three solutions for the x, y, and z components

of X. The graphs in the upper row show the total computation times (sum of all

three columns). The center row depicts the solution times only (3rd column), as those

typically determine the per-frame cost in interactive applications
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10k 0.11/1.56/0.08 0.15/0.65/0.09 0.07/0.22/0.01 0.07/0.14/0.03

20k 0.21/3.36/0.21 0.32/1.38/0.19 0.14/0.62/0.03 0.14/0.31/0.06

30k 0.32/5.26/0.38 0.49/2.20/0.27 0.22/1.19/0.05 0.22/0.53/0.09

40k 0.44/6.86/0.56 0.65/3.07/0.33 0.30/1.80/0.06 0.31/0.75/0.12

50k 0.56/9.18/0.98 0.92/4.00/0.57 0.38/2.79/0.10 0.39/1.00/0.15

100k 1.15/16.0/3.19 1.73/8.10/0.96 0.79/5.66/0.21 0.80/2.26/0.31

200k 2.27/33.2/11.6 3.50/16.4/1.91 1.56/18.5/0.52 1.59/5.38/0.65

300k 3.36/50.7/23.6 5.60/24.6/3.54 2.29/30.0/0.83 2.35/9.10/1.00

400k 4.35/69.1/37.3 7.13/32.5/4.48 2.97/50.8/1.21 3.02/12.9/1.37

500k 5.42/87.3/47.4 8.70/40.2/5.57 3.69/68.4/1.54 3.74/17.4/1.74
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Table 2. Comparison of different solvers for bi-Laplacian systems Δ2
SX = B of 10k

to 50k and 100k to 500k free vertices X. The three timings for each solver represent

matrix setup, pre-computation, and three solutions for the x, y, and z components of

X. The graphs in the upper row show the total computation times (sum of all three

columns). The center row depicts the solution times only (3rd column), as those typi-

cally determine the per-frame cost in interactive applications. For the larger systems,

both the iterative solver and the sparse LU factorization fail to compute a solution
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10k 0.33/5.78/0.44 0.40/0.65/0.48 0.24/1.68/0.03 0.24/0.35/0.04

20k 0.64/12.4/1.50 0.96/1.37/0.84 0.49/4.50/0.08 0.49/0.82/0.09

30k 1.04/19.0/5.46 1.40/2.26/1.23 0.77/9.15/0.13 0.78/1.45/0.15

40k 1.43/26.3/10.6 1.69/3.08/1.47 1.07/16.2/0.20 1.08/2.05/0.21

50k 1.84/33.3/8.95 2.82/4.05/2.34 1.42/22.9/0.26 1.42/2.82/0.28

100k — 4.60/8.13/4.08 2.86/92.8/0.73 2.88/7.29/0.62

200k — 9.19/16.6/8.50 — 5.54/18.2/1.32

300k — 17.0/24.8/16.0 — 8.13/31.2/2.07

400k — 19.7/32.6/19.0 — 10.4/44.5/2.82

500k — 24.1/40.3/23.4 — 12.9/60.4/3.60
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We also analyzed the memory consumption of the multigrid method and
the sparse Cholesky solver, although both methods were optimized more for
performance than for memory requirements. The memory consumption of the
multigrid method is mainly determined by the meshes representing the different
hierarchy levels. In contrast, the memory required for the Cholesky factorization
depends significantly on the sparsity of the matrix, too. On the 500k example
the multigrid method and the direct solver need about 1GB and 600MB for
the Laplacian system, and about 1.1GB and 1.2GB for the bi-Laplacian system.
Hence, the direct solver would not be capable of factorizing Laplacian systems
of higher order on current PCs, while the multigrid method would succeed.

These comparisons show that direct solvers are a valuable and efficient al-
ternative to multigrid methods even if the linear systems are highly complex.
In all our experiments the sparse Cholesky solver was faster than the multigrid
method, and if the system has to be solved for multiple right-hand sides, the
precomputation of a sparse factorization is even more beneficial.

4 Applications

In this section we finally show several typical computer graphics and geome-
try processing applications that benefit from the use of sparse direct solvers.
Most applications are based on solving Laplacian or bi-Laplacian systems, thus
their characteristic behavior for different complexities or different solvers can
be transferred from the experiments of the last section. Notice that it is diffi-
cult to compare to timings published in original papers on these approaches,
since the computational costs depend on hardware factors (e.g., CPU, memory
bandwidth), software factors (operating system, compiler), and on the datasets
used. Although we tried to pick similar machines, these comparisons should be
considered as a rough performance indication only.

Surface Modeling. The first application is freeform modeling or multiresolu-
tion modeling [8, 9], which requires to compute (the change of) a smooth base
surface by solving bi-Laplacian systems Δ2

SX = B for the x, y, and z coordi-

Fig. 3. Multiresolution modeling allows a low-frequency change of the global shape

based on the change of a smooth base surface, that is computed by solving a bi-

Laplacian system Δ2
SX = B
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Fig. 4. Mesh morphing of two bunny models based on Poisson shape interpolation.

Instead of absolute vertex positions, gradient fields (or Laplace coordinates) are inter-

polated as Dt = (1 − t) D0 + t D1, and the vertex positions are derived by solving the

Poisson system ΔXt = Dt (Image courtesy of Xu et al.)

nates of the unconstrained (dark/blue) vertices X (cf. Fig. 3). Each time the
designer drags some points on the surface, the boundary constraints change and
the linear system has to be solved for another right-hand side in order to com-
pute the deformed surface. As a consequence, these approaches greatly benefit
from the sparse factorization solvers. The precomputation of basis functions for
the deformation [9] also requires to solve the linear system for several right-hand
sides, such that this precomputation gets more efficient, too.

Mesh Morphing. Given two meshes of identical connectivity, morphing be-
tween them corresponds to some linear interpolation of their geometry. But
instead of using absolute vertex coordinates xi for this task, Alexa [13] proposed
to represent the meshes by differential Laplace coordinates di := Δxi and to
linearly interpolate those instead. In a recent approach, Xu et al. [14] propose a
non-linear interpolation of gradient fields, which avoids shrinkage of in-between
models. In both cases each morphing step leads to a new set of Laplace vectors
D = (d0, . . . ,dn), from which the vertex positions can be derived by solving
ΔX = D. The resulting Laplacian multiple right-hand side problems can again
be solved efficiently by sparse Cholesky factorizations.

Implicit Smoothing. In the implicit fairing approach [1] meshes are smoothed
by an integration of the PDE ∂ xi/∂t = λΔSxi, leading to the so-called mean
curvature flow. Using semi-implicit integration, this non-linear problem is de-
composed into a sequence of linear ones, such that in each time-step the Laplace
discretization ΔX(i) is updated and the Laplacian system (I − λΔX(i)) X(i+1) =
X(i) is solved. In this case the matrix re-ordering and the symbolic factoriza-
tion can be kept and just the numerical factorization and the solution have to
be computed. In our experiments this saved 40%-60% of the solver time per
iteration.

Conformal Parameterization. Computing a conformal parameterization [6,
7] with fixed boundary vertices requires the solution of a Laplacian system
ΔSX = B for x and y (cf. Fig. 5, left). In [32] a highly elaborate multigrid
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Fig. 5. Two different parameterizations of a car model: discrete conformal parame-

terization with fixed boundary (left), least squares conformal map with free boundary

(right). Both parameterizations are computed by solving a sparse spd system for the

free 2D parameter values associated to the mesh vertices

solver has been derived by evaluating different kinds of multigrid hierarchies and
preconditioning strategies. This solver was then used for the parameterization
of large meshes, where it takes only 37s for 580k DoFs on a 2.8GHz Pentium4.
This time includes loading the system from disk, building the hierarchy, and
solving the system for the x coordinate [43]. Our implementation based on the
sparse Cholesky solver takes (on a 3.0GHz Pentium4) 28s for for the parameter-
ization of 600k vertices, including matrix setup, re-ordering, factorization, and
two solutions.

Least Squares Conformal Maps. In the approach of [18] a conformal pa-
rameterization is not computed by minimizing the discrete Dirichlet energy, but
instead by solving a system of Cauchy-Riemann equations for each face (cf.
Fig. 5, right). Since the number of faces F is about twice the number of vertices
V , this system is overdetermined and hence solved in the least squares sense us-
ing the normal equations, leading to a spd matrix of dimension 2V ×2V , which is
similar in structure to a Laplacian matrix. Since the iterative solver used in the
original paper [18] was not capable of parameterizing large meshes, the use of
multigrid methods was proposed in [33]. On an 1.2GHz Pentium4 their hierarchi-
cal approach takes 18s, 31s, and 704s for meshes of 18k, 36k, and 560k vertices,
respectively. On a comparable machine (Athlon 1.2GHz) the direct sparse solver
is about 4–5 times faster; on the 3.0GHz machine these parameterizations can
be computed in 1.4s, 3.2s, and 95s, respectively.

Fluid Dynamics. In Stam’s stable fluid approach [17] the Navier-Stokes equa-
tions are solved by a four-step procedure in each time step: after updating ex-
ternal forces and advecting the velocity field, a diffusion process considers the
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Fig. 6. This example shows a fluid’s reaction to a high external force after 1, 3, and

20 time-steps (from left to right) on a 100 × 100 grid. The line segments visualize

the velocity field, the background color shows the amount of divergence. A constant

number of CG iterations per frame fails to sufficiently propagate the forces and to keep

the field free of divergence (top row). The sparse Cholesky solver requires a constant

time per frame, is significantly faster, and yields correct results independent from the

external forces (bottom row)

viscosity and a final projection yields a divergence-free velocity field. The last
two steps both involve solving a Laplacian system. Since the field is assumed
not to change too much from one time-step to the next, the current state yields
good starting values, such that in most implementations a fixed small number of
CG iterations is used for solving both systems. The break-down of this method
in case of high external forces is shown in the top row of Fig. 6. In contrast, the
sparse direct solver is twice as fast in this example and yields correct results also
for rapidly changing fields (cf. Fig. 6, bottom row).

Poisson Matting. Laplacian systems are also used in image manipulation, like
for instance the Poisson matting approach of [16]. A given image I is considered
as a composition of a foreground object F and a background B using the matting
equation I = αF + (1 − α)B, which is to be solved for the matte α (x, y) (cf.
Fig. 7). We use a variant of the original approach, where taking the divergence
of an approximate gradient of the matting equation leads to the Poisson system
Δα = div (sign(F − B)∇I). Hence, the computation of the α-matte amounts
to solving a spd Laplacian system and therefore benefits from the sparse direct
solvers like the other examples.
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Fig. 7. In order to separate an image I into foreground F and background B, the

Poisson matting approach derives an α-matte by solving a Poisson equation Δα = b

5 Conclusion

In this paper we discussed and compared different classes of linear system solvers
for large sparse symmetric positive matrices, and pointed out that sparse direct
solvers are a valuable alternative to the usually employed multigrid methods,
since they turned out to be more efficient and easier to use in all our experiments.

Although the class of sparse spd matrices seems to be quite restricted, many
frequently encountered geometry processing problems over polygonal meshes
lead to exactly this kind of systems or can easily be reformulated in this form.
As we demonstrated in our experiments, all these applications could benefit
considerably from the use of sparse direct solvers.
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32. Aksoylu, B., Khodakovsky, A., Schröder, P.: Multilevel Solvers for Unstructured

Surface Meshes. SIAM Journal on Scientific Computing 26 (2005) 1146–1165
33. Ray, N., Levy, B.: Hierarchical Least Squares Conformal Map. In: Proc. of Pacific

Graphics 03. (2003) 263–270
34. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite

Matrices. Prentice Hall (1981)
35. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In:

Proc. of the 24th National Conference ACM. (1969) 157–172



Efficient Linear System Solvers for Mesh Processing 83

36. Liu, J.W.H., Sherman, A.H.: Comparative analysis of the Cuthill-McKee and the
reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numerical
Analysis 2 (1976) 198–213

37. George, A., Liu, J.W.H.: The evolution of the minimum degree ordering algorithm.
SIAM Review 31 (1989) 1–19

38. Liu, J.W.H.: Modification of the minimum-degree algorithm by multiple elimina-
tion. ACM Trans. Math. Softw. 11 (1985) 141–153

39. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal of Sci. Comput. 20 (1998) 359–392

40. Toledo, S., Chen, D., Rotkin, V.: Taucs: A library of sparse linear solvers.
(http://www.tau.ac.il/∼stoledo/taucs)

41. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supern-
odal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and
Applications 20 (1999) 720–755

42. Renard, Y., Pommier, J.: Gmm++: a generic template matrix C++ library.
(http://www-gmm.insa-toulouse.fr/getfem/gmm intro)

43. Aksoylu, B.: (personal communication)



Smoothing of Time-Optimal Feedrates
for Cartesian CNC Machines

Casey L. Boyadjieff, Rida T. Farouki, and Sebastian D. Timar

Department of Mechanical and Aeronautical Engineering,
University of California, Davis, CA 95616, USA

{clboyadjieff, farouki, sdtimar}@ucdavis.edu

Abstract. Minimum-time traversal of curved paths by Cartesian CNC
machines, subject to prescribed bounds on the magnitude of acceleration
along each axis, usually involves a “bang-bang” control strategy in which
the acceleration bound is realized by one or another of the machine axes
at each instant during the motion. For a path specified by a polynomial
parametric curve and prescribed acceleration bounds, the time-optimal
feedrate may be expressed in terms of a C0 piecewise-rational function of
the curve parameter. This function entails sudden changes in either the
identity of the limiting axis, or the sign of acceleration on a single limiting
axis, incurring demands for instantaneous changes of motor torque that
may not be physically realizable. A scheme is proposed herein to generate
smoothed C1 (slightly sub-optimal) feedrate functions, that incur only
finite rates of change of motor torque and remain consistent with the axis
acceleration bounds. An implementation on a 3-axis CNC mill driven by
an open-architecture software controller is used to illustrate this scheme.

1 Introduction

When a system of bounded motive force is commanded to execute a given spatial
path, it is natural to ask: what control strategy, consistent with the motive-force
constraints, yields the minimum traversal time? Suppose the path is a straight
line, to be traversed by a rocket capable of equal maximum forward and reverse
thrust, that starts and ends at rest and is free of external forces. The obvious
answer in this case is to accelerate with maximum forward thrust to the midpoint
and then to apply maximum reverse thrust for the second half of the traversal.
This type of solution is known as “bang-bang” control, since it involves operation
at the limits of the motive-force constraints throughout the entire motion, and
is characteristic of most time-optimal control schemes [9, 12].

Time-optimal feedrates are of interest in high-speed machining [11, 16, 19]
where the traversal of strongly-curved paths at high feedrates can cause inertial
effects to dominate cutting forces, friction, etc. However, time-optimal feedrates
for Cartesian CNC machines subject to prescribed axis acceleration bounds are
in general continuous, but non-differentiable at certain switching points or break
points along the curved path. The resulting discontinuities in feed acceleration
(rate of change of feedrate) along the curved path imply instantaneous changes
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in the output torque of the motors that drive the machine axes, which are not
physically realizable. The goal of this study is to develop a simple automatic
means of smoothing time-optimal feedrates so as to remove the feed acceleration
discontinuities, without significantly increasing the overall path traversal time
or violating the original axis acceleration constraints.

This paper is organized as follows. Section 2 provides a brief summary of the
time-optimal feedrate problem for acceleration-limited Cartesian CNC machines
executing paths specified by polynomial parametric curves [18]. The procedure
for smoothing the C0 break points and switching points of these feedrates is then
developed in Section 3, together with a method for ensuring that the smoothed
feedrate does not violate the original acceleration constraints. In Section 4 we
describe the real-time CNC interpolator algorithm for the smoothed feedrate.
Finally, Section 5 provides experimental validation of the smoothing process
through implementation on a 3-axis open-architecture CNC mill, and Section 6
summarizes our present results and makes some concluding remarks.

2 Time-Optimal Feedrates

The time-optimal feedrate problem was first studied in the context of robotics
[2, 13, 14, 15] – typically for systems with revolute joints. In a previous study
[18] we have applied these methods to Cartesian CNC machines. This context
is attractive, because it admits computation of a closed-form expression for the
time-optimal feedrate when the path is specified as a polynomial parametric
curve. The differential equation that governs the extremal acceleration phases
can be solved analytically, and the break points and switching points delin-
eating such phases can be computed using only a univariate polynomial root
solver.

Since it is rather involved, we refer the reader to [18] for complete details1 of
the time-optimal feedrate algorithm. Our focus in this paper is on developing a
post-processing step, employed to smooth the tangent-discontinuous points that
arise generically in the time-optimal feedrate. The smoothed feedrate, although
slightly sub-optimal, is less taxing on the axis drive motors since it does not
demand instantaneous changes in the axis motor output torque.

2.1 Path Geometry and Kinematics

Consider a path specified [4] by a degree-n Bézier curve

r(ξ) =
n∑

k=0

pk

(
n

k

)
(1− ξ)n−kξk , ξ ∈ [ 0, 1 ]

1 See also [17] for an extension of the algorithm to accommodate finite axis velocity
bounds as well as acceleration bounds.
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with control points pk = (xk, yk, zk) for k = 0, . . . , n. If s denotes cumulative
arc length along the curve, the parametric speed σ(ξ) of this curve is defined by

σ(ξ) =
ds

dξ
= |r′(ξ)|

and the unit tangent and normal vectors and curvature are defined by

t =
r′

σ
, n =

r′ × r′′

|r′ × r′′| × t , κ =
|r′ × r′′|

σ3
. (1)

The feedrate v is the derivative ds/dt of arc length with respect to time, while
a = dv/dt is called the feed acceleration. Derivatives with respect to time t and
the curve parameter ξ, denoted by dots and primes respectively, are related by

d
dt

=
ds

dt

dξ

ds

d
dξ

=
v

σ

d
dξ

. (2)

In terms of v and a, the velocity and acceleration vectors along the curve may
be written as

v = ṙ = v t , a = r̈ = a t + κ v2 n .

Given a feedrate function v(ξ) along the path r(ξ), the function of the real-time
CNC interpolator algorithm within the machine control software is to compute a
reference point in each sampling interval of the digital controller. The difference
between the reference point and the actual machine position, as measured by
encoders on the machine axes, constitutes the error signal for the control loop.

2.2 Construction of the Time-optimal Feedrate

Using relations (1) and (2) and noting that r′ · r′′ = σσ′ allows the acceleration
vector to be written as

a =
vv′

σ2
r′ +

v2

σ3
(σr′′ − σ′r′) .

It is convenient to work with the square of the feedrate, which we denote by q =
v2. In terms of q and its derivative q′ = 2vv′ the components of the acceleration
along each axis may be expressed as

ax = q′

2σ2 x′ + q
σ3 (σx′′ − σ′x′) ,

ay = q′

2σ2 y′ + q
σ3 (σy′′ − σ′y′) ,

az = q′

2σ2 z′ + q
σ3 (σz′′ − σ′z′) .

(3)

For a given path r(ξ), the time-optimal feedrate problem consists of determining
the function v(ξ) that will minimize the integral

T =
∫ 1

0

σ(ξ)
v(ξ)

dξ
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a

v2

v < vlim(ξ)

amin

amax

a

v2

Fig. 1. Left: The constraints (4) define the set of feasible states as the portion of a six-

sided parallelogram in the right half of the (v2, a) plane. Right: Any feedrate lower than

the velocity limit vlim(ξ) yields a range amin ≤ a ≤ amax of feasible feed accelerations

subject for all ξ ∈ [ 0, 1 ] to the constraints

−Ax ≤ ax ≤ +Ax , −Ay ≤ ay ≤ +Ay , −Az ≤ ax ≤ +Az , (4)

where Ax, Ay, Az are prescribed acceleration bounds for the machine axes.
Complete details on the solution of this problem were presented in [18]. We

content ourselves here with summarizing some key points that are pertinent to
the feedrate smoothing problem. Observing that q′ = 2σa, the three inequalities
(4) are linear in q and a, and each defines a strip of feasible states in the (q, a)
plane. The intersection of these three strips yields a six-sided parallelogram of
feasible (v2, a) combinations, and of course only the portion in the right half of
the plane (v2 > 0) is physically meaningful (see Figure 1).

At each point of the path r(ξ), the right-most vertex of the parallelogram
shown in Figure 1 defines the maximum possible feedrate vlim(ξ) consistent with
the constraints (4). The graph of vlim(ξ) in the (ξ, v) plane is the velocity limit
curve (VLC). This graph is continuous, but not differentiable everywhere – it
exhibits slope discontinuities at critical points, where there is a change in the
identity of the constraints defining the right-most parallelogram vertex.

The construction of the time-optimal feedrate function is performed in the
(ξ, q) plane, below the “forbidden region” bounded by the VLC. At points below
the VLC, there is a range [ amin, amax ] of feasible feed accelerations, and in
general the optimal feedrate q(ξ) is a piecewise-analytic function whose segments
correspond alternately to integrating the differential equations a = amax(ξ, v)
and a = amin(ξ, v). Transitions between consecutive amax and amin phases are
called switching points, since they signal a change in the identity of the limiting
acceleration constraint. In general, some switching points lie on the VLC and
others are situated below it. Besides switching points, the time-optimal feedrate
generically exhibits other types of break points, corresponding to turning points,
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inflections, equi-orientation points, and transition points – see [18] for further
details and a complete algorithm description.

Consider the form of the time-optimal feedrate function during an extremal
acceleration phase. If x is the limiting axis, taking (4) with equality yields

q′

2σ2
x′ +

q

σ3
(σx′′ − σ′x′) = αxAx

or

q′ + 2
(

x′′

x′ −
σ′

σ

)
q = αx

2Axσ2

x′ , (5)

where the quantity αx = ±1 identifies amax/amin phases. The linear differential
equation (5) admits the closed-form solution

q =
( σ

x′
)2

(C + 2αxAxx) , (6)

with the integration constant C determined from a known point (ξ∗, q∗) of the
trajectory. Similar expressions hold if y or z, rather than x, is the limiting axis.

2.3 Illustrative Example

Figure 2 shows a typical example2 of the time-optimal feedrate computation for
a planar Bézier curve with axis acceleration bounds Ax = Ay = 104 in/min2.
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Fig. 2. Test curve (left) and construction of time-optimal feedrate along it (right). The

region of infeasible states above the VLC is shown shaded. The time-optimal squared

feedrate q(ξ) is a piecewise-rational function with three switching points below the VLC

(circles) and two switching points on the VLC (squares denote VLC critical points, and

triangles denote tangency points of amax or amin trajectories with the VLC)

2 In keeping with manufacturing practice in the USA, velocities and accelerations are
quoted in terms of inches and minutes. For ease of reference, note that 100 in/min =
42.3 mm/sec and 10, 000 in/min2 = 70.6 mm/sec2.
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The time-optimal feedrate q(ξ) can be represented exactly as a piecewise-
rational function with five switching points: one is a critical point on the VLC,
one is a tangency of an amin/amax trajectory with the VLC, and the remaining
three are intersections of amin and amax trajectories below the VLC.

3 Smoothing of Time-Optimal Feedrates

To maintain a near-time-optimal form for the smoothed feedrate, we adopt a
strategy that inserts a short smoothing segment centered on each C0 break point
or switching point of the exact time-optimal feedrate. With this approach, most
of the time-optimal feedrate is left unmodified, and the smoothing segments are
designed to meet the unaltered segments with C1 or C2 continuity.

To illustrate the need for feedrate smoothing, we show in Figure 4 the time-
optimal feedrate for the Bézier curve in Figure 3. This feedrate exhibits two
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Fig. 3. Quintic Bézier curve with two switching points and an intermediate break point

indicated, delineating the three segments of the time-optimal feedrate function
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Fig. 4. Time-optimal feedrate v versus curve parameter ξ for the Bézier curve shown

in Figure 3, with switching points between feedrate segments denoted by circles
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Fig. 5. Accelerations of the x axis (left) and y axis (right) in in/min2 versus the curve

parameter ξ for time-optimal traversal of the curve shown in Figure 3. On the first

curve segment, the acceleration is saturated at the upper bound on the y axis, while

on the second and third segments it is saturated at the upper and lower bounds on the

x axis. Note the acceleration discontinuities in both the x and y axes at the switching

points, which demand instantaneous changes in output torque of the axis drive motors

switching points that incur feed acceleration discontinuities, and an intermedi-
ate break point defined by a path turning point. Figure 5 indicates the indi-
vidual x and y axis accelerations resulting from application of the time-optimal
feedrate to the specified path. The bang-bang nature of the motion is clearly
apparent, with either the x or y axis exhibiting saturation at the prescribed
acceleration limits ±10, 000 in/min2 throughout the entire traversal (for sim-
plicity we employ planar tool paths as examples: the extension to spatial paths
is straightforward).

3.1 Form of Feedrate-Smoothing Segments

The first step in the smoothing process is to identify all C0 break points and
switching points ξk in the exact time-optimal feedrate, and to define a smoothing
interval [ ξl, ξr ] of width Δξk = ξr − ξl centered on each. On this interval, the
function q(ξ) giving the square of the exact feedrate is replaced by the form

qs(ξ) =
σ2(ξ)
w2(ξ)

for ξ ∈ [ ξl, ξr ] . (7)

Here the parametric speed σ(ξ) is determined by the curve r(ξ), while w(ξ) is
a polynomial whose coefficients will be used to match the endpoint values and
derivatives of the smoothing feedrate segment with the unmodified time-optimal
segments at the interval end-points ξl, ξr. Each C0 point ξk of the time-optimal
feedrate has an individually-determined polynomial w(ξ).

Specifying the smoothing function w(ξ) as a quintic allows the modified feed
segment to match the unmodified feedrate segments with C2 continuity (or C1

continuity with two residual degrees of freedom available for shape adjustment).
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This polynomial is defined in Bernstein form using a normalized parameter by

w(u) =
5∑

k=0

wk

(
5
k

)
(1− u)5−kuk , where u =

ξ − ξl

ξr − ξl
.

The coefficients w0, w1 and w4, w5 allow for interpolation of end-point values
and first derivatives of the time-optimal feed segments, while w2 and w3 yield the
additional degrees of freedom. These degrees of freedom may be used to ensure
that the modified feedrate segment will be traversed in an integer number of
time steps of the digital controller.

The specific form (7) of the smoothing element is motivated by the desire to
have a closed-form reduction of the integral arising in the real-time interpolator
algorithm (described in Section 4 below). In terms of the normalized parameter
u, the elapsed time along this segment with the feedrate (7) is

t(u) =
∫ u

0

σ

v
du =

∫ u

0

w du

and hence t(u) is simply a polynomial, since w is a polynomial in u.

3.2 Matching End-Point Values and Derivatives

For each switching point ξk with smoothing interval [ ξl, ξr ] a unique quintic
smoothing function may be obtained by matching the values and first and second
derivatives of the smoothing segment to those of the time-optimal feedrate at
the interval endpoints ξl, ξr. The first and second derivatives of the smoothing
segment (7) with respect to ξ are

q′ = 2σ(σ′w−σw′)
w3

q′′ = 2(σσ′′+σ′2)
w2 − 2(σ2w′′+4σσ′w′)

w3 + 6σ2w′2
w4 .

(8)

Re-arranging (7) and (8) to write w, w′, w′′ on the left then gives

w = σ√
q
,

w′ = 2σσ′w−q′w3

2σ2 ,

w′′ = 3w′2
w
− 4σ′w′

σ
+ 2w(σσ′′+σ′2)−q′′w3

2σ2 .

(9)

Taking first and second derivatives of w(u) and relating u ∈ [ 0, 1 ] to ξ ∈ [ ξl, ξr ]
then yields the following expressions for the coefficients of w(u):

w0 = w(ξl) , w1 = w0 + Δξk w′(ξl)
5 , w2 = 2w1 − w0 + (Δξk)2 w′′(ξl)

20 ,

w5 = w(ξr) , w4 = w5 − Δξk w′(ξr)
5 , w3 = 2w4 − w5 + (Δξk)2 w′′(ξr)

20 .

The factors of Δξk and (Δξk)2 arise from the fact that

dw

dξ
=

1
Δξk

dw

du
.
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3.3 Adjustment for Integer Number of Time Steps

Because CNC machine controllers employ digital time sampling, it is desirable to
adjust the smoothing function slightly to ensure that the smoothing segment may
be traversed in an integer number of time steps Δt. This can be accomplished
while maintaining C1 continuity between the smoothed and unmodified feedrate
segments by adjusting only the middle two coefficients w2, w3 of the smoothing
function. The total traversal time T for the smoothed feedrate segment is

T = Δξk

∫ 1

0

w du =
Δξk

6

5∑
k=0

wk . (10)

The total time is divided by the sampling interval Δt to give the nominal number
of steps needed for the smoothing segment. This number is then rounded up to
the nearest integer value N , and a new traversal time Tnew corresponding to an
integer number of time steps is defined by Tnew = NΔt.

Multiplying the middle two control points of (10) by a scaling factor k and
equating with Tnew gives

Tnew =
Δξk

6
[w0 + w1 + k(w2 + w3) + w4 + w5 ] ,

and hence the appropriate value of the scaling factor is

k =
6Tnew/Δξk − (w0 + w1 + w4 + w5)

w2 + w3
. (11)

Once the coefficients w2 and w3 have been multiplied by k, the resulting time
function will correspond to an integer number of time steps for traversal of the
smoothed feedrate segment.

3.4 Compatibility with Acceleration Constraints

Using a smoothed feedrate segment of the form (7) with end-point values and
derivatives matched to those of the unmodified time-optimal feedrate does not
automatically guarantee that the smoothed segment will be compatible with
the axis acceleration constraints (4). Requiring the smoothed feedrate to be less
than or equal to the original time-optimal feedrate does not per se ensure the
satisfaction of these constraints. Thus, an additional step is required to check
that the smoothed feedrate does not violate these constraints.

For the smoothing feedrate segment (7) the axis accelerations (3) are

ax =
wx′′ − w′x′

w3
, ay =

wy′′ − w′y′

w3
. (12)

Applying the smoothing algorithm described above to a variety of time-optimal
feedrates and evaluating (12) indicates that in most cases the modified feedrate
segments do satisfy the acceleration constraints, but in some cases the size of
the smoothing interval Δξk may require adjustment.
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Starting with a nominal smoothing interval of Δξk = 0.08, and incrementally
reducing this interval if violations of the acceleration constraints occur, appears
to be a satisfactory approach to satisfying the constraints in all cases. A lower
bound on Δξk (and the corresponding number of time steps) is imposed by the
need for an integer number of time steps. Rounding up for an integer number
of time steps has little effect when the total number of time steps is large, but
rounding a segment up from a low number of steps can cause an oscillatory
smoothed feedrate, incurring acceleration constraint violations. To preserve a
near-time-optimal form for the modified feedrate, an upper bound on Δξk must
also be imposed so that the smoothing segments account for a relatively small
fraction of the overall feedrate profile. Assuming equal, symmetric acceleration
constraints (Ax = Ay = A, say) gives

−A ≤ wx′′ − w′x′

w3
≤ +A and −A ≤ wy′′ − w′y′

w3
≤ +A ,

or
wx′′ − w′x′ − w3A ≤ 0 , wy′′ − w′y′ − w3A ≤ 0 ,
wx′′ − w′x′ + w3A ≥ 0 , wy′′ − w′y′ + w3A ≥ 0 ,

(13)

for the axis acceleration bounds on a smoothed feedrate segment.
All four of the inequalities (13) must be satisfied to ensure that there are

no acceleration constraint violations. To verify this, the coefficients of each of
the four polynomials on the left are examined. If all the coefficients are of the
same sign, and are greater than or equal to zero or less than or equal to zero, as
appropriate, the constraints are satisfied. However, coefficients of mixed sign do
not necessarily signal a constraint violation over the smoothing interval. In the
case of mixed-sign coefficients, a Sturm sequence [8, 21] may be used to verify if
the bounding function has any roots within the smoothing interval. If no roots
are indicated, the bound is satisfied. Otherwise, a shorter smoothing interval
must be used to avoid violation of an acceleration constraint.

3.5 Smoothing Example

To illustrate the smoothing process, a step-by-step smoothing of the time-optimal
feedrate shown in Figure 7, for the path in Figure 6, is described below. In this
example, there are four switching points that require feedrate smoothing and an
additional three break points (corresponding to path turning points) that do not
require smoothing. For simplicity, a single smoothing interval Δξ = 0.06 will be
used, centered about each of the four switching points ξk. Each of these points
is smoothed individually as follows.

1. Starting with the left-most switching point to be smoothed and referring to
it as ξ1, the left and right smoothing interval endpoints ξl and ξr are simply
ξl = ξ1 − 1

2Δξ and ξr = ξ1 + 1
2Δξ.

2. The squared time-optimal feedrate q(ξ) along with its derivatives q′(ξ), q′′(ξ)
and the parametric speed σ(ξ) and its derivatives σ′(ξ), σ′′(ξ) are evaluated
at ξl and ξr for use in (9) to determine values for w(ξ), w′(ξ), w′′(ξ) at ξl and



94 C.L. Boyadjieff, R.T. Farouki, and S.D. Timar

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5

y 
[in

]

x [in]

Fig. 6. Quintic Bézier curve with break points and switching points between feedrate

segments indicated by circles. The curve starts and ends at the point (x, y) = (2.5, 1.0)
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Fig. 7. The time-optimal feedrate v (for acceleration bounds A = ±10, 000 in/min2 on

both axes) versus the parameter ξ along the curve in Figure 6, with break points and

switching points indicated by circles
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Fig. 8. Smoothed time-optimal feedrate v versus curve parameter ξ for the curve shown

in Figure 6 with smoothing intervals Δξ = 0.06
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Fig. 9. Comparison of individual axis accelerations for the x (upper) and y (lower)

axes versus the curve parameter ξ, corresponding to the original time-optimal feedrate

shown in Figure 7 (left) and the smoothed feedrate shown in Figure 8 (right). The

acceleration discontinuities incurred by the original feedrate have been eliminated with

the smoothed feedrate, but the acceleration bounds ±10, 000 in/min2 are still satisfied

ξr. With the desired values of w and its derivatives known at the smoothing
interval endpoints, coefficients for the smoothing function w(u), defined on
u ∈ [ 0, 1 ], are determined.

3. The function w(u) is integrated over [ 0, 1 ] to obtain the traversal time T for
the smoothing segment, and a new traversal time Tnew corresponding to an
integer number of sampling intervals Δt is obtained from Tnew = �T/Δt�Δt.
The time factor k is given by (11) and once w2 and w3 have been multiplied
by k, we are assured that the smoothed segment will be completed in a whole
number of time steps of the digital controller.

4. The smoothed feedrate segment is checked for violations of the acceleration
constraint, as discussed in the preceding section, and adjusted as necessary
if the constraints are not immediately satisfied.

Figure 8 shows the resulting feedrate after all the derivative discontinuities
have been removed. Figure 9 compares the accelerations of the x and y axes
corresponding to the original time-optimal feedrate (Figure 7) and the smoothed
feedrate (Figure 8). The acceleration discontinuities apparent in the former have
clearly been eliminated in the latter, while maintaining consistency with the
prescribed acceleration bounds.
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4 Real-Time CNC Interpolator

The role of the real-time intepolator in a CNC system is to compute, at each
sampling time tj = jΔt of the digital controller, a reference point r(ξj) along the
curve in accordance with the specified feedrate variation. The actual machine
position at time tj (as measured by encoders on the machine axes) is compared
with this reference point in order to generate a control signal for the axis drive
motors. The elapsed time t is related to the curve parameter ξ through the
interpolation integral, defined by

t(ξj) = jΔt =
∫ ξj

0

σ

v
dξ . (14)

Note that the unknown ξj in equation (14) is the upper limit of integration. In
order to have an efficient and accurate real-time interpolator, capable of accom-
modating a variable feedrate v, it is desirable that the above integral have a
simple closed-form reduction. For further background on real-time CNC inter-
polator algorithms, see [3, 5, 6, 7, 10, 20, 22]

If the function t(ξ) has a simple closed-form expression, we can solve the
equation t(ξj) = jΔt by a few Newton-Raphson iterations, using the preceding
reference-point parameter value ξj−1 as a starting approximation. Note that t(ξ),
being the integral of a positive function, is monotone-increasing. Fortunately,
a closed-form reduction of the interpolation integral is possible for both the
unmodified time-optimal feedrate segments and the smoothing segments.

For the form (6) of the squared time-optimal feedrate (assuming that x is the
acceleration-limited axis), substituting into (14) gives

t(ξj) =
∫ ξj

0

x′
√

C + 2αxAxx
dξ =

√
C + 2αxAxx(ξj)

Ax
+ K ,

where the integration constant K is determined by the condition ξ = 0 at t = 0.
Similarly, for a smoothing feedrate segment of the form (7) we obtain

t(ξj) =
∫ ξj

0

w dξ ,

and since w is a polynomial, t is a polynomial of degree one higher. It is defined
on the normalized interval u ∈ [ 0, 1 ] in Bernstein form

t(u) =
6∑

k=0

tk

(
n

k

)
(1− u)6−kuk.

by the coefficients t0 = 0 and

tk = tk−1 +
wk−1

6
for k = 1, . . . , 6 .
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5 Experimental Implementation

5.1 Open-Architecture CNC Milling Machine

The machine used in the experiments is a MillRight Compact Series 18 3-axis
CNC milling machine manufactured by MHO Corporation (Figure 10), operating
with the OpenCNC controller developed by Manufacturing Data Systems, Inc.
Rather than the usual “black-box” type CNC controller, this system follows
the open-architecture principle, allowing the user full access to all the functions
and data that control the machine. In particular, custom real-time interpolators
can be substituted for the standard G code interpolators. Precision ground ball-
screws powered by brushless DC motors drive the three machine axes, with shaft
mounted encoders providing position feedback and allowing for data collection.
The digital controller operates with a sampling frequency f = 1024 Hz (sampling
interval Δt = 1/f ≈ 0.001 sec) and a single processor provides the user interface,
controls the motors, and interpolates the tool paths in real time.

Tool paths to be executed are transmitted to the machine in the form of part
program files, which are read by a pre-processor that computes geometric and
feedrate information prior to invoking the appropriate real-time interpolator for
the type of path and feedrate to be executed. In the present context, the machine
is driven directly from the analytic description of the path as a Bézier curve,
and the corresponding smoothed time-optimal feedrate functions are specified in
terms of piecewise-rational functions. Unlike common practice in NC part pro-

            

Fig. 10. The MHO 3-axis mill with OpenCNC open-architecture software controller

used for the time-optimal feedrate smoothing experiments
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grams, it is not necessary to approximate the path by piecewise-linear/circular
G codes.

5.2 Results

Figure 11 shows the measured time-optimal feedrate corresponding to an actual
run of the machine along the Bézier curve shown in Figure 3 with acceleration
bounds ±10, 000 in/min2 on each axis. Axis location data is measured by the
encoders in each sampling interval of the digital controller, and axis velocities are
computed a posteriori from the saved position data by first-order differencing.
The feedrate is computed as the magnitude of the vector whose components are
defined by the individual axis velocities. The measured feedrate profile seen in
Figure 11 differs somewhat from the “theoretical” profile in Figure 4, primarily
due to the fact it is plotted against the elapsed time t rather than the curve
parameter ξ (these variables are related by dξ/dt = v/σ).

Figure 12 shows measured feedrate data from runs with the smoothed time-
optimal feedrate on the same curve (Figure 3), with smoothing intervals Δξ =
0.04 and 0.08. The traversal time for the unsmoothed feedrate was 3688 time
steps Δt, whereas the smoothed feedrates required an additional 3 time steps
and 7 time steps, respectively – these amount to only 0.08% and 0.19% increases
in the total traversal time for the smoothed feedrates, a modest price to pay
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Fig. 11. Measured time-optimal feedrate for curve shown in Figure 3
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Fig. 12. Smoothed feedrate for curve in Figure 3 with Δξ = 0.04 (left) and 0.08 (right)
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Fig. 13. Another quintic Bézier test curve for time-optimal traversal
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Fig. 14. Time-optimal feedrate (left) for the curve shown in Figure 13, and smoothed

feedrate (right) using the smoothing interval Δξ = 0.08

for effectively eliminating the derivative discontinuities from the time-optimal
feedrate (and consequent abrupt changes in motor torque output).

Finally, Figures 13-14 show another Bézier curve and corresponding feedrates
as determined from the encoder data. In this case, the unsmoothed feedrate
requires 2963 time steps, and using a smoothing interval of Δξ = 0.08 requires
an additional 6 time steps (a 0.20% increase in traversal time) while eliminating
the derivative discontinuities.

6 Closure

The implementation of time-optimal control on Cartesian machines with fixed
acceleration bounds on each axis is particularly attractive, since this problem
admits an essentially closed-form solution given a univariate polynomial root-
solver to identify the feedrate break points and switching points. For a path
defined by a polynomial curve r(ξ), the square of the time-optimal feedrate
may be determined as a piecewise-rational function q(ξ) of the curve parameter.
Furthermore, this feedrate may be realized by a real-time CNC interpolator that
works directly off the analytic curve description, obviating the need to invoke
cumbersome and problematic G code [1] approximations.
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The formal solution to the time-optimal feedrate problem is a C0 function,
that exhibits derivative discontinuities at certain points. Use of this function
incurs instantaneous changes in the torque demand imposed on the axis drive
motors, which is physically unrealizable and may cause damage. In this paper we
propose a simple scheme to remove the sudden jumps in acceleration incurred by
the formal time-optimal feedrate solution. This yields a more practical, smoother
motion with only a very modest (typically < 1%) increase in the overall path
traversal time. The smoothed feedrate coincides with the exact time-optimal
feedrate over most of its extent, and the form of the smoothing elements is
designed to facilitate a simple real-time CNC interpolator algorithm.
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Abstract. We consider the combined completion of 3D surface relief
and colour for the hidden and missing portions of objects captured
with 2 1

2
D (or 3D) capture techniques. Through an extension of non-

parametric texture synthesis to facilitate the completion of localised 3D
surface structure (relief) over an underlying geometric surface comple-
tion we achieve realistic, plausible completion1 and extension of 2 1

2
D

partially visible surfaces. Additionally we show how this technique can
be extended to the completion of increasingly available colour 2 1

2
D / 3D

range data.

1 Introduction

3D data acquisition techniques in computer vision, such as range scanning and
stereo photography, suffer from the common problem of their 21

2D sensing
limitation—meaning the back-facing or occluded portions of surfaces within a
scene cannot be realised from a uni-directional capture. As a result captur-
ing a complete object in 3D can involve the time-consuming process of multi-
directional capture and subsequent data fusion and registration [1, 2]. Often,
despite multi-directional capture some small regions of the object remain uncap-
tured, giving rise to the need for hole-filling techniques to produce a completed
3D model [3].

To date, work on this problem has been primarily limited to the completion
of smooth surface continuation in small missing surface patches [4, 3, 5, 6, 7, 8]
or the completion of geometrically conforming shapes through the use of shape
fitting and parameterisation [9, 10, 11, 12, 13]. Such techniques, although valid,
limit truly plausible surface completion (i.e. cases where the original surface
portion and the completion are indistinguishable) to a smooth or geometrically
conforming subset of all real-world occurring surfaces.

Contrastingly, here we consider the localised completion of real 3D surfaces
in terms of both its 3D surface structure (relief) and colour detail. Our approach
has two parts: firstly we assume the underlying surface can itself be completed

1 By plausible, we mean passable to the viewer as if it were original and indistinguish-
able from any existing original part.

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 102–120, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Plausible 3D Colour Surface Completion Using Non-parametric Techniques 103

Fig. 1. Completion of a 2 1
2
D golfball

using one of these prior smooth completion techniques (1); over which the lo-
calised relief and colour completion is then achieved through the propagation of
knowledge from the original to the unknown surface portion (2).

As an example, we complete both the geometric sphere and surface dimples of
a 2 1

2D golfball as shown in Fig. 1. Here we see the successful plausible completion
of the surface relief pattern (Fig. 1(C,D)) over a geometric completion (Fig. 1(B))
of the original 21

2D capture (Fig. 1(A)).
Concurrent work [14] has also considered a similar approach based on prop-

agating 3D surface patches from visible to unknown surface portions. However,
as shown in [14], this patched based approach relies on the existence of suitable
propagatable patches in the original surface portion. Although computationally
more expensive, the fine-detailed per-{point—vertex—range sample} based ap-
proach proposed here does not suffer this limitation. Instead it lends itself well
to the propagation of both tile-able surface textures (see Figs. 1 and 10) and the
completion/extension of more stochastic surface textures (see Figs. 11 and 12)
derived from the original—without any apparent ‘tiling’ or similar repetitive ar-
tifacts. In addition our combination of both localised 3D structure and colour
completion extends beyond that of [14].

Considerable recent interest in the texturing of 3D objects with 2D colour
textures is also of note (e.g. [15, 16, 17, 18, 19])—in some cases to give illusion of
a real 3D surface displacement texture [18, 19] or merely to enhance the 3D ap-
pearance of a surface in a given rendering [15, 16, 17]. Although related in some
aspects, many of these approaches fall short of the problem we pose here, con-
centrating instead on the consistent mapping of often fairly arbitrary, synthetic
textures onto relatively smooth 3D surface. The main advantage of such smooth
surfaces is the ease of which consistent localised reference frames can be derived
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automatically [17, 18] or specified from user input [15, 16, 19] to facilitate the
orientation of a 2D texture over the 3D surface.

Related work has also considered aspects of geometric texture transfer -
the semi-automated transfer of surface relief from one geometric object to an-
other [20, 21, 22, 23, 24]. Although addressing a similar problem a number of is-
sues, in addition to the techniques utilised, differentiate it from the approach
we consider here: the use of smooth surfaces [20, 21, 22], synthetic relief tex-
tures [21, 23], the overall lack of relief/colour integration and in some cases a
degree of user interaction [20, 22].

In contrast, we consider the completion and extension of existing non-smooth
surfaces containing both highly regular 3D textures (e.g. Figs. 1 and 10) and more
stochastic natural textures (e.g. Figs. 9 and 11) in terms of both real 3D surface
displacement texture (relief) and colour. Our overall aim being the plausible
completion and extension of a given real-world surface sample so that seamless
good continuation exists between the original and the completion.

In this paper we combine our prior work in completion of 3D surface relief [25]
with an additional aspect of colour completion. Firstly we outline and present
our background work in this area [25] together with some results and then detail
its recent extension to dual surface structure / colour completion.

2 2D Non-parametric Texture Synthesis

Non-parametric sampling, lying at the heart of our approach, was proposed
as a method for texture synthesis in 2D images based on using a statistical
non-parametric model and an assumption of spatial locality [26]. Unlike other
approaches in the texture synthesis arena (e.g. [27, 28]) which attempt to explic-
itly model the texture prior to synthesis, this approach samples directly from the
texture sample itself—a kind of implicit modelling akin to the robotics paradigm
‘the world is its own best model’. As a result it is “very powerful at capturing
statistical processes for which a good model hasn’t been found” [26] and thus
highly suited to our work in 3D.

In 2D operation non-parametric sampling is very simple—it successively
grows a texture outwards from an initial seed area, one pixel at a time, based on
finding the pixel neighbourhood in the sample image that best matches that of
the current target pixel (i.e. the one being synthesised). It then uses the central
pixel’s value as the new value for the target (see Fig. 2).

Matching is based upon using the normalised sum of squared difference metric
(SSD) between two pixel neighbourhoods (i.e. the textured pixels surrounding
the target and those surrounding each sample pixel). A 2D Gaussian kernel is
used across the neighbourhood to assign weights reflecting pixel influence in
inverse proportion to distance from the target.

The neighbourhoods are defined as W × W square windows around each
pixel where W , window size, is a parameter perceptually linked to the scale of
the largest regular feature present in the texture [26]. From the set of all sample
neighbourhoods, the top η% of matches are selected as those with the lowest
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Fig. 2. 2D non-parametric texture synthesis

SSD values from which one is then randomly selected to provide the value at the
target. As an additional constraint the randomly selected match is only used to
fill the target provided it has a normalised SSD value less than a specified error
threshold, e, related to the acceptable level of noise in the synthesised texture—
a factor directly related to that present in the original sample. Here in our 3D
approach, as in the original 2D work, we set η = 10.

3 3D Non-parametric Completion

Here we review our initial technique for the completion of 3D surface relief
from [25]. The extension to combined relief/colour completion is detailed further
on in this paper.

The basic aspects of non-parametric sampling map well from 2D to 3D: the
2D image becomes a 3D surface, the individual pixel becomes a point on that
surface, a pixel neighbourhood becomes the set of nearest neighbours to a surface
point and the actual pixel values being synthesised become displacement vectors
mapping discrete points on a textured surface to the geometric surface derived
from prior fitting.

The pre-processing stage estimates the underlying geometric surface model
for the original scene portion [29, 30] from which a set of displacement vectors,−→
D(i), and a corrected surface normal, ni, for each point i can be derived (see
Fig. 5). Additionally we derive a completed ‘smooth’ portion of the invisible
surface based on parametric shape completion [9, 11, 10] (e.g. Figure 1(B)).
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Fig. 3. ‘Smooth’ surface completion and displacement vectors

The main input to our non-parametric completion process is a geometrically
complete version of the 3D surface represented as a discrete set of labelled points,
P . The originals, labelled as textured, are the sample points, s ∈ samples, whilst
those forming the completed ‘smooth’ portion, labelled untextured, are the tar-
get points, t ∈ targets, as shown in Fig. 3(A). Each point also has an associated
surface normal, n, and each sample point an associated displacement vector,−→
D(s), as shown in Figs. 3(B) and Fig. 5. For convenience and to aid the con-
struction and spatial use of point neighbourhoods on the surface this input is
represented as a combined homoeomorphic surface triangulation [31, 32] of both
target and sample points (see Fig. 3(C)). Henceforth we now consider our points,
i ∈ P , as vertices, i ∈ triangulation(P ).

The reconstruction algorithm adapts to 3D by considering vertex neighbour-
hoods on the 3D surface in place of the pixel neighbourhoods of [26]. Each vertex
neighbourhood, N(i), is the set of vertices lying within a radius of W edge con-
nections from the vertex being reconstructed (see Fig. 4). W forms the window
size parameter synonymous to that of the earlier 2D approach. The algorithm
now proceeds by finding the best sample region matching the textured portion
of a target vertex’s neighbourhood, as follows.

Firstly, the set of target vertices currently lying on the textured/untextured
surface boundary are identified as the current target list, L. The first target
vertex, t ∈ L, is then matched, using neighbourhood based matching, against
every available vertex s ∈ samples. A match is then randomly chosen from the
best 10% of this set, based upon matching score. Provided the matching score
for this choice is below the specified acceptable error threshold parameter, e,
this choice is accepted and the current target vertex, t, is textured by mapping
the displacement vector, −→D(s), from the chosen sample vertex, s, to t. The
current target, t, is now labelled as textured and the algorithm proceeds to the
next vertex in L. If the match is not accepted (or no match was possible) the
vertex is simply skipped and returned to the pool of target vertices for future
synthesis—in this specific case the window size, W , associated with t for future
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Fig. 4. 3D vertex neighbourhoods

matching is reduced in size, Wt = W − 1, to facilitate matching on a scale of
reduced constraint, global → local, where required.

Once L is exhausted, the next set of boundary targets are identified, based on
the updated vertex labelling, and the process is continued until all t ∈ targets are
labelled as textured. To ensure target vertices are processed in the order of most
to least constrained, L is sorted by decreasing number of textured neighbours
prior to processing. Additionally, synthesis progress is monitored over each target
list constructed—should no match choices be accepted over an entire list, the
acceptable error threshold e is raised slightly (10%) to relax the acceptable error
constraint for synthesis as per [26].

The remaining key element in this algorithm outline is the matching of tex-
tured target neighbourhoods (as shown in Fig. 4) to vertices in the sample region.
This is performed using an adaptation of the SSD metric based on the projec-
tion of neighbourhood vertices onto the surface at each sample point. In order
to compute the match between target vertex t, with textured neighbourhood
vertices Nt(t), and a sample vertex s with textured neighbourhood Nt(s), Nt(t)
is first transformed rigidly into the co-ordinate system of s. This is based on
knowing the local reference frames at s and t, denoted Rs and Rt respectfully,
which combined with the positional translations given by t and s facilitate the
transformation of Nt(t) relative to s as Nt(t)′. However, as t is itself untex-
tured whilst s is textured, the natural misalignment (owning to the presence
or absence of texture) has to be avoided by transforming to the corresponding
untextured position of s on the underlying surface, s′, calculated using the dis-
placement vector at s, −→D(s), as s′ = s − −→D(s). Overall we have a resulting,
t→ s′, homogeneous co-ordinate transformation as follows:

Nt(t)′ =
[

[Rs] s′

0 0 0 1

] [
[Rt] t
0 0 0 1

]−1

Nt(t)

In order to estimate this spatial transformation the reference frames Rs and
Rt are required. Given each vertex normal this can be generally derived using
either localised curvature or more global fitting based techniques. Both, however,
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Fig. 5. Sample vertex geometry example

have disadvantages—notably their intolerance to noise and additionally the un-
derlying ambiguity of surface orientation on many common geometric surfaces.
Here, localised reference frames are derived deterministically based on finding
mutually perpendicular vectors, −→u −→v , to the surface normal, n = (x, y, z):

if x = min(|x|, |y|, |z|),
choose u = (0,−z, y),
v = n× u,

and by similar construct when y or z is the smallest.
Although far from perfect, this ensures at least localised consistency whilst

the problems of global inconsistency are solved by simply augmenting the algo-
rithm to match the target neighbourhood to every sample region at R different
rotational orientations around the normal axis - additional parameter R specifies
the divisions of 2π giving a set of rotations (e.g. R = 4 gives 4 orientations at 0,
π/2, π, 3π/2).

To aid understanding, an overview of the surface geometry described here is
shown in Figs. 4 and 5.

The task now is to compute the SSD as a vertex matching problem between
this transformed neighbourhood, Nt(t)′, and the textured surface vertices at s.
Although this seems to be a simple 3D point matching problem the presence
of sampled surface texture means that simple Euclidean space ‘nearest point’
matching using the raw textured vertices can produce artificial matches in com-
mon scenarios as shown in Fig. 6(A). Although such problems could be overcome
by enforcing a scheme of one-to-one minimal distance cross-matching between
the sets, this relies on the assumption that the densities of both point sets are
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Fig. 6. Point matching via surface projection

equal—this is both difficult to assert uniformly and, as we shall discuss later,
their inequality becomes a salient issue.

Here we ensure consistent vertex matching, independent of relative density,
by matching vertices, v1 → v2, v1 ∈ Nt(t)′, v2 ∈ Nt(s), based on their relative
projected positions on the common surface model, embodied in the displacement
vector associated with every vertex, v′

i = vi − −→D(vi). This effectively matches
vertices based solely on their relative spatial surface position rather than relative
textured-related depth as shown in Fig. 6(B). From these pairings in surface
projected space, v′

1 → v′
2, the SSD is calculated based on the original vertex

positions, v1 → v2.
It should also be noted that here we are not performing a neighbourhood,

Nt(t)′, to closed neighbourhood, Nt(s), match. Although our notation, Nt(s),
conceptually represents the surface vertices in the local region of s, Nt(t)′ ac-
tually is matched against the unrestricted set of textured vertices, N(s) = (i ∈
P | label(i) = textured), with a viable match only being considered when all
matching partners, v2, of v1 ∈ Nt(t)′ are themselves also textured (i.e. v2 has
assigned label textured). When a viable match is found the SSD is calculated
based on the distance of each target vertex, v1 ∈ Nt(t)′, directly to the complete
triangulated surface (not just the closest vertex)—i.e. the minimum squared
distance to any surface triangle, 
j , that has v2 as a vertex, 
j ∈ triangles(v2):

SSDshape =
Nt(t)′∑

v1

dv1 min
�j∈triangles(v2)

(dist(v1,
j)2)

Additionally, as in [26], a weight dvi
, based on a 2D Gaussian kernel is used

to weight the SSD vertex matches, v1 → v2, relative to the distance t→ v1, v1 ∈
N(t) (i.e. spatial proximity to t).

Pseudocode for the outlined technique is given in Appendix A.
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4 Sampling Theory of 3D Surfaces

As identified in [25], one aspect highly relevant to this work is the adaptation of
common sampling theory to 3D capture [33].

Although the concepts of under-sampling, aliasing and the Nyquist frequency
for a given real world signal are common to general signal processing in lower
dimensions [34] it would appear to have received little attention in 3D vision [33].
The specific sampling question that concerns us here is: given an existing surface
capture, what is the required target vertex density to achieve synthesis without
suffering aliasing effects? This is synonymous to obtaining the Nyquist frequency
for the capture itself.

Based upon the Nyquist sampling theorem, that a signal must be sampled at
twice the frequency of its highest frequency component, it can thus be derived
that the upper limit on the Nyquist frequency, fNy , of a given signal capture
is 1/δ where δ represents the signal sampling density. This represents the mini-
mum frequency at which the capture must be sampled in order to allow perfect
reconstruction and is equal to twice the highest frequency component, fmax, of
the signal, fNy = 1/δ = 2fmax.

Transferring this principle back into the context of 3D triangulated surfaces,
where the vertices are the sample points and the depth value is the signal, we have
to consider that the sampling frequency across the whole surface may be non-
uniform due to common-place variation in the original capture process. Hence
only a lower limit on the sampling density required to successfully represent the
maximum detail or highest frequency components can be considered based on
the maximum surface sample density. This translates as the minimum distance
between any two signal samples or conversely the minimum edge length, min(e),
present in a Delaunay based triangulation (e.g. [31, 32]). This gives an upper limit
on the Nyquist frequency, fNy = 1/min(e), and an upper spectral component
limit, fmax = 1/2min(e), for the surface capture.

Surface extension must thus use a vertex sampling density, δ, of at least
min(e) to avoid the effects of aliasing and ensure restoration of the surface (i.e.
δ ≥ min(e)). This is illustrated in Fig. 7 where for a synthetic surface case we see
that using a sampling density for the target vertices set below that associated
with the Nyquist frequency causes aliasing (Fig. 7(A)), whilst using the minimum
edge length removes the aliasing artifacts, (Fig. 7(B)).

Fig. 7. Aliasing in 3D completions
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Our final issue in 3D sampling arises from remembering that here we are sam-
pling and reconstructing from a finite digitised representation of a signal, a set of
vertices representing surface sample points, rather than the infinite analogue sig-
nal commonly considered. Although the infinite surface is arguably represented
by the surface lying through these points, embodied here in a triangulation, the
nature of the non-parametric sampling technique requires finite to finite domain
reconstruction, represented here by the sets of sample and target vertices. This
introduces an issue relating to vertex alignment between the two regions. If there
exists a significant phase shift between the target vertex set and the samples this
results in a scenario where the suitable displacement value for a given target ver-
tex, given its spatial position on the surface, is not adequately represented in
the sample set—it in fact lies at some other point on the infinite surface. Due to
the nature of this technique and limitations in the ability to identify and correct
phase shifts in this domain we solve this problem by oversampling the original
surface capture—creating the intermediate samples as required. It should now
be clear that having an approach that is independent of a common point density
for the sample and target portions is highly desirable. Practically, oversampling
is achieved by subdividing the surface using an adaptation to surface tessellation
such that each triangle is replaced by 4 coplanar triangles. For i original vertices,
by reference to Euler’s formula, this results in i′ vertices where i′ ≥ 2i but with
no increase in the surface detail, and hence no increase in the Nyquist related
surface properties.

Overall, from our 3D sampling discussion, we now have a practical means of
determining a suitable surface reconstruction, the minimum triangulation edge
length, and an oversampling solution for phase alignment problems.

5 Surface Relief Results

Here we present a number of examples of isolated localised surface structure
(relief) completion using our approach. Firstly, in Fig. 8 we see the success-
ful completion of synthetic wave and noise patterns over planar surfaces and
the completion of localised surface shape on cylindrical surfaces. Surface com-
pletions based on using real objects portions, scanned with our 3D Scanners’
Reversa laser scanner, are presented in Figures 1, 9, and 10. These show the suc-
cessful completion of a range of surface types from the propagation of golfball
dimples across the completed sphere (Fig. 1), natural tree bark texture real-
istically completed over an extended cylinder (Fig. 9) and structured surface
completion of a scale model of the Pisa tower (Fig. 10).

These results were produced using Euclidean [30] or least squares [29] fit-
ting for initial geometric completion. The original sample surface was oversam-
pled once, triangulation utilised the Cocone algorithm [31, 32] and Mersenne
twister [35] provided the random source. All completions use only the origi-
nal, oversampled set of textured points as sample vertices—the variation, called
‘boot-strapped’ completion, whereby the usable sample set grows as the textured
surface area grows, is not considered here.
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Fig. 8. Completion of synthetic examples

As a means of quantitative evaluation, the mean integral of the volume be-
tween the geometric surface fit and the original and synthetic (completed) surface
portions for a sample of results are shown in Table 1. These statistics support the
visual similarity of the results (i.e. Figs. 8 and 10) but also show a statistical in-
crease in difference where the texture is stochastic in nature (i.e. Figs. 9 and 12).
In both cases the statistics identify a difference not apparent to visual inspection
(see Figs. 9 and 12) and hence arguably within the bounds of visually plausible
completion—our desired goal.

Overall the results produce realistically structured and textured surface com-
pletions representing plausible completion. However, two limitations experienced
in the original 2D work [26] where similarly encountered. Firstly, erroneous com-
pletions were encountered in some cases due to the effects of accumulated error
and illustrate the reliance on good parameter choice (see [25]). Additionally,
despite extensive pre-computation and memoisation, this technique is computa-
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Fig. 9. Completion of natural textures—tree bark

Table 1. Mean integral below surface texture

Object Original Completion % diff.

Fig. 8 bottom right 0.247123 0.252846 2.32%

Fig. 10 bottom right 0.807048 0.828891 2.71%

Fig. 9 1.18208 1.24769 5.55%

Fig. 12 0.15616 0.166552 6.65%

tionally very expensive (O(stw) for s samples and t targets and window size w.
Fig. 9 requires about 13 hours on a 2.6Ghz Pentium 4 with t = 7200, s = 12852).

6 Extension to Colour

In addition to completing the localised surface relief it is also possible to ex-
tend our approach to perform combined surface relief and colour completion on
increasingly available colour 21

2D or 3D range data.
The SSD equation utilised previously, SSDshape , can be adjusted as follows

to take account of both surface shape and colour, SSDcolour :

SSD = (μ)SSDshape + (1− μ)SSDcolour

where μ defines the relative weighting of shape (i.e. relief) and colour in the
overall matching value. This weight balances the relative importance of localised
surface shape against colour in the completion problem. Commonly, as in many
natural objects, both are closely interrelated and equal weighting may be suit-
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Fig. 10. Completion of tower of Pisa

able. More generally the correlation of colour to surface relief (or relative 3D
position) is left as an aspect of psychological vision research [36].

The SSDcolour is calculated based on comparing the RGB colour, c ∈ {r, g, b},
of each vertex v1 ∈ Nt(t)′ to that of the nearest sample vertex, v2, on the surface
at s:

SSDcolour =
Nt(t)′∑

v1

dv1

{r,g,b}∑
c

| cv1 − cv2 |
3

.

As before, dv1represents the Gaussian weight associated with the target neigh-
bourhood vertex, v1, based on its spatial proximity to t in Nt(t).

Both SSDshape and SSSDcolour are normalised to the range [0, 1] utilising a
known upper bound on each. For colour this is based on the size of the utilised
colour map and for shape based on maximum difference between two displace-
ment vectors in the set of samples taking into consideration displacement occur-
ring on either side of the surface fit. This maximum difference is computed by:

max
si,sj∈samples

‖ (nsi
.

−→
D(si)
‖ −→D(si) ‖

)−→D(si)− (nsj
.

−→
D(sj)
‖ −→D(sj) ‖

)−→D(sj) ‖

where ns is the surface normal at sample s.
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Fig. 11. Completion of tree bark surface relief and colour

Fig. 12. Extension of tree bark relief and colour

Using this alternative SSD equation the algorithm operates as previously
outlined with the additional step of colour propagation from sample to target
when a suitable match is chosen (see Appendix A). Oversampling of the coloured
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Fig. 13. RGB histogram of original (left) and completed (right) tree bark portion in

Fig. 11

sample surface is performed by colouring each new sample, due to tessellation,
using a Gaussian weighted sum of the k nearest neighbours.

The combined colour and surface shape completion of a section of tree bark,
captured using a high resolution stereo capture rig, is shown in Fig. 112. This
shows a highly plausible completion of the bark surface texture and associated
colour over the underlying geometric cylinder completion of the original bark
sample (as per Fig. 9). In addition to this visual comparison, the colour his-
tograms for the original and completed portions, separated by RGB colour chan-
nel (Fig. 13), show a strong correlation between the colour distribution achieved
in the completed portion and that of the original. A further example of successful
colour and surface shape completion is shown in Fig. 12 where we see the clear
extension of existing features from the original (i.e. continuation major ridges
present in bark sample) and the derivation of similar distinct features (i.e. new
ridges formed in foreground of completion) in addition to the general plausibility
of the completed relief and colour correlation.

7 Conclusions and Further Work

In this paper we have presented a novel method for 3D surface completion that,
given the underlying surface geometry, facilitates the plausible completion and
good continuation of surfaces without strict surface localised surface geometry
both in terms of localised surface structure (relief) and colour.

This works extends, and indeed complements, earlier work on the smooth
surface completion and hole-filling [4, 3, 5, 6, 7, 8] and on strict geometric com-
pletion [9, 10, 11, 12, 13] with both its completion abilities for localised surface
structure and also the integration of concurrent structure and colour completion.

2 Colour versions of Figures 11 and 12 are also available from the Web site
http://www.iplab.inf.ed.ac.uk/mvu/breckon/
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Our successful completion / extension of real surface relief, combined with
colour, presents interesting future directions for work in creating illusory surface
relief [18, 19] and enhancing 3D model rendering through realistic and consistent
texturing with a 2D sample [15, 16, 17]. Similarly it offers an interesting parallel
to work in the transfer of surface reliefs [20, 21, 22, 23, 24] both in terms of the
technique proposed and its practical application.

In contrast to the specific completion work of [14], our technique does not
suffer the limitations of such a patch based approach, at the expense of com-
putational cost, but does rely on knowledge of the underlying ‘smooth’ surface
completion—here derived from geometric fitting but possibly obtainable from
prior techniques in smooth surface completion [3, 6, 5, 8, 7] and fitting [37] in
subsequent work.

In terms of future work a number of possibilities remain—notably the ex-
tension to surfaces without strict underlying geometry and also work to address
the issues of computational complexity and accumulated error identified previ-
ously [25]. It is hoped that the investigation of a multi-resolution variant on the
proposed technique, together with the adaptation of other 2D texture synthesis
techniques to this problem domain, will allow future progress in these areas.

In addition, interesting issues relating to the approximation of the Nyquist
frequency of a 3D surface and in synthesising surfaces through infinite represen-
tation models still require investigation—an area of equal interest in 3D storage,
transmission and compression as it is in synthesis.

Acknowledgements. This work was supported by EPSRC and QinetiQ PLC.
Textures in Fig. 2 reproduced by kind permission of A. Efros [26].
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A Algorithm Pseudocode

This technique is now outlined in pseudocode, following in the style of the original
2D work [26], based on the definition of the following key data items:

– surface = triangulated surface with vertices labelled as textured/untextured.

– targets = list of untextured vertices (targets) of A.

– samples = list of textured vertices (samples) of A.

– −→D(si)= surface displacement vector of textured vertex Si, Si ∈ samples.

GrowSurface(surface, targets, samples)

while targets is not empty

progress = 0

theTargets = vertices on textured/untextured boundary of surface.

for each vertex v in theTargets do

BestMatches = FindMatches(v, surface, samples)

if BestMatches not empty

BestMatch = random selection from (BestMatches)

if (BestMatch.error < MaxErrThreshold) then

Propagate D(BestMatch) to v

progress = 1

Remove v from targets

Label v as textured

end if

end if

end for

if progress == 0
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MaxErrThreshold = MaxErrThreshold * 1.1;

end if

end while

FindMatches(v, surface, samples)

neighbours = textured vertices in vertex neighbourhood of v

for every vertex v’ of neighbours

calculate Gaussian weight w(v’) relative to distance(v’, v)

end for

TotalWeight = sum(i in neighbours, w(i))

for every vertex s in samples do

neighbours’ = neighbours transformed relative to s

ssd = 0

validMatch = TRUE

for each point i in neighbours’ do

closestVertex = closest vertex on surface to i

if (closestVertex is in samples)

tri = closest triangle of surface to i

(v1, v2, v3) = vertices of triangle tri

if (v1, v2, v3 are in samples)

distance = min distance from i to tri

ssd += w(i) * distance

else

validMatch = FALSE

end if

else

validMatch = FALSE

end if

end for

if validMatch do

ssd = ssd / TotalWeight

Add (s, ssd) to Matches

end if

end for

BestMatches = all i in Matches with i.ssd <= min(i.ssd) * (1.1)

Return BestMatches

For the extension to combined relief and colour, SSD and propagation are rede-
fined as stated earlier.
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Abstract. An algorithm is proposed to determine the topology of an
implicit real algebraic surface in R3. The algorithm consists of three steps:
surface projection, projection curve topology determination and surface
patches composition. The algorithm provides a curvilinear wireframe of
the surface and the surface patches of the surface determined by the
curvilinear wireframe, which have the same topology as the surface. Most
of the surface patches are curvilinear polygons. Some examples are used
to show that our algorithm is effective.

1 Introduction

An implicit real algebraic surface (or curve, or hypersurface) S in Ru with degree
d is defined by f(x1, x2, · · · , xu) = 0 where f(x1, x2, · · · , xu) ∈ Q[x1, x2, · · ·, xu]
is a polynomial of degree d, and R and Q are the fields of real and rational
numbers, respectively. Determining the topology of an algebraic surface is not
only an interesting mathematical problem, but also a key issue in computer
graphics and CAGD [4, 5, 20, 22].

When u = 1, S is a set of discrete points on a line. When u = 2, S is a
plane algebraic curve. Topology determination for plane algebraic curves has
been studied thoroughly [1, 3, 6, 7, 9, 12, 13, 14, 16, 21]. Algorithms to determine
the topology of spatial algebraic curves are also proposed in the following papers
[4, 6, 9, 10]. When u = 3, the problem is more complex. The topology of S with
d = 2 is well known. They are quadratic surfaces. But when d ≥ 3, there are
only some special surfaces whose topology can be efficiently determined [11, 12].
Fortuna et al presented an algorithm to determine the topology of non-singular,
orientable real algebraic surfaces in the projective space [8]. Morse theory is used
to represent an implicit algebraic surface by polyhedra in theory by Hart et al [15,
20, 22]. Theoretically, the CAD (Cylindrical Algebraic Decomposition) method
proposed by Collins can be used to provide information about the topology
of an algebraic surface [2, 3]. But in the general case, there exist no complete
algorithms to determine the topology of an implicit algebraic surface.

In this paper, we present an algorithm to determine the topology of S for u =
3, d ≥ 3. In the rest of this paper, we replace f(x1, x2, x3) = 0 with f(x, y, z) = 0.

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 121–146, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We obtain a curvilinear wireframe of the surface. The surface patches of the
surface are determined by the curvilinear wireframe. Most of the surface patches
are curvilinear polygons. The wireframe and the surface patches have the same
topology as the surface. If needed, we can easily modify our algorithm to ensure
that all the surface patches are curvilinear triangles.

The basic idea of our algorithm is as follows. We first ensure that the surface
is a normal surface by performing certain transformations. We then project S :
f(x, y, z) = 0 to a proper plane and obtain a plane algebraic curve C: g(x, y) = 0.
Thirdly, we analyze the topology of C in a finite box, by finding its singularities,
dividing the curve into plane curve segments, and dividing the box in the plane
into cells. At the fourth step, we divide the spatial curve defined by {f(x, y, z) =
0, g(x, y) = 0} into spatial curve segments and compute the number of surface
patches connected with each spatial curve segment. This is the key step of the
algorithm. In order to determine the number of curve segments connected with
a singular point and the number of surface patches connected with a curve
segment, we introduced certain minimal circles and find these numbers from the
information of the intersections of the circle with the surface. The main steps
of the algorithm are similar to Collins’ CAD method. But, the purpose of our
algorithm is different from that of the CAD method, and many aspects of the
algorithm are totally new. Main parts of the algorithm are implemented in Maple
and nontrivial examples are used to show that the algorithm is effective.

This paper is divided into six sections. The aim of the second section is to
obtain projection curve of the surface. The third section presents an algorithm to
determine the topology of the plane projection curve. Space curve segmentation,
surface patch composition and the surface topology representation are discussed
in the fourth section. The fifth section presents the main algorithm to obtain
the topology of a given algebraic surface. Then we draw a conclusion in the last
section.

2 Projection Curve of a Surface

In the following, we always assume S is an algebraic surface: f(x, y, z) = 0,
where f(x, y, z) ∈ Q[x, y, z]. Suppose that

f(x, y, z) = f1(x, y, z)m1 · · · fn(x, y, z)mn , (1)

where fi(x, y, z) ∈ Q[x, y, z](i = 1, · · · , n) are irreducible polynomials. If a com-
ponent contains variable z only, it represents some parallel planes. We can
delete this kind of components before we compute the projection curve and
add these planes into the topology structure and compute the intersection curve
with other components after we finish the analysis. So we suppose that there
does not exist this kind of components. It is clear that f(x, y, z) = 0 and
f1(x, y, z) · · · fn(x, y, z) = 0 have the same topology. We still denote

f(x, y, z) = f1(x, y, z) · · · fn(x, y, z). (2)
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Let

g(x, y) = Res(f(x, y, z),
∂f(x, y, z)

∂z
, z), (3)

where Res(f(x, y, z), ∂f(x,y,z)
∂z , z) is the Sylvester resultant [26] of f(x, y, z) and

∂f(x,y,z)
∂z with respect to z. Suppose g(x, y) = g1(x, y)n1 · · · gm(x, y)nm , where

gi(x, y)(i = 1, · · · ,m) are irreducible polynomials. Still denote

g(x, y) = g1(x, y) · · · gm(x, y). (4)

Then the projection curve of the surface S : f(x, y, z) = 0 is a plane curve defined
by g(x, y) = 0. In this section, we will prove some properties of the projection
curve of a given surface S.

In order to determine the topology of S effectively and efficiently, we assume
that

C1. There exist no points P0(x0, y0) satisfying f(x0, y0, z) ≡ 0.
C2.

∑
i+j+k=d ai,j,k ·xi ·yj ·zk has no factors like T (x, y), where d is the total

degree of f(x, y, z), ai,j,k is the coefficient of the term xi · yj · zk in f(x, y, z).
T (x, y) is a bivariate polynomial.

A normal surface is an algebraic surface defined by a square-free polynomial
(the multiple of the irreducible factors of the polynomial is no more than 1)
satisfying conditions C1 and C2.

If condition C1 does not hold, represent f(x, y, z) as follows.

f(x, y, z) = ck(x, y) · zk + ck−1(x, y) · zk−1 + · · ·+ c0(x, y), (5)

where ci(x, y) ∈ Q[x, y](i = 1, · · · , k) and ck(x, y) is a nonzero polynomial. Then,
the variety {c0(x, y) = 0, c1(x, y) = 0, · · · , ck(x, y) = 0} has real roots, and the
line {x = x0, y = y0} is on the surface S. In this case, it is difficult to analyze
the topology of the surface near this line. Here is an example.

f(x, y, z) = x2 · y2 + z2 · y2 + x2 · z2 − 7/2 · x · y · z. (6)

We have f(0, 0, z) ≡ 0 and {x = 0, y = 0} is a line on the surface.
Represent f(x, y, z) as follows.

f(x, y, z) = Ld(x, y, z) + Ld−1(x, y, z) + · · ·+ L0, (7)

where Lt(x, y, z) =
∑

i+j+k=t ai,j,k · xi · yj · zk(t = 0, · · · , d). It is clear that
all the asymptotic surfaces are contained in the surface defined by the equation
Ld(x, y, z) = 0. If condition C2 does not hold, there exists an asymptotic surface
of f(x, y, z) = 0 of the form T (x, y) = 0, which is vertical to XY-plane. For
example, the surface f(x, y, z) = x · y · z − 1 = 0 does not satisfy condition C2,
because x = 0, y = 0 are asymptotic planes of it.

Lemma 1. If a surface is not normal, we can find a coordinate transformation
like (8) such that the surface obtained with this transformation has the same
topology as the original one and is normal.⎛⎝x

y
z

⎞⎠ =

⎛⎝1 0 a
0 1 b
0 0 1

⎞⎠⎛⎝X
Y
Z

⎞⎠ , (8)
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where (X,Y,Z) and (x, y, z) are points in the new and old coordinate systems,
respectively, and a, b are rational numbers.

Proof. Taking the coordinate transformation as (8) and representing f(x, y, z)
as (7), we have

F (X,Y,Z)
= f(X + a · Z,Y + b · Z,Z)
= Ld(X + a · Z,Y + b · Z,Z) + Ld−1(X + a · Z,Y + b · Z,Z) + · · ·+ L0

= Ld(a, b, 1) · Zd + Cd−1(X,Y )Zd−1 + · · ·+ C0,

where Ci(X,Y ), i = 0, 1, · · · , d − 1 is the coefficients of F (X,Y,Z) in variable
Z. We can find rational numbers a0, b0, such that, Ld(a0, b0, 1) = 0. Denote the
corresponding F (X,Y,Z) as F0(X,Y,Z). We will show that F0 = 0 is a normal
surface. Since L(a0, b0, 1) is a nonzero constant, F0 = 0 satisfies condition C1. It
is clear that all the asymptotic surface of F0 = 0 are hidden in Ld(X +a0 ·Z,Y +
b0 ·Z,Z) = 0. There is a term Ld(a, b, 1) ·Zd in Ld(X + a0 ·Z,Y + b0 ·Z,Z), so
there are no factors like T (X,Y ) hidden in it. F0 = 0 satisfies condition C2. So
F0 = 0 is a normal surface. ��

For the non-normal surface f(x, y, z) = x·y ·z−1 = 0, we choose a = 1, b = 1.
The new surface is F (X,Y,Z) = Z3 + (Y + X) · Z2 + X · Y · Z − 1 = 0. It is a
normal surface.

For the surface defined by (6), we can choose (a, b) = (1, 1). The new surface
is F (X,Y,Z) = 3·Z4+4·Y ·Z3+4·X ·Z3−7/2·Z3+2·Y 2 ·Z2+2·X2 ·Z2−7/2·Y ·
Z2−7/2·X ·Z2+4·X ·Y ·Z2−7/2·X ·Y ·Z+2·X ·Y 2 ·Z+2·X2 ·Y ·Z+X2 ·Y 2 = 0.
It is a normal surface.

Following the discussion above, we can derive the following algorithm to
obtain a normal projection curve (the projection curve of a normal surface) for
a given irreducible surface f(x, y, z) = 0.

Algorithm 1. The input is an irreducible polynomial f(x, y, z). The output is
a normal projection curve g(x, y) = 0 of the surface f(x, y, z) = 0.

1. Represent f(x, y, z) as (5) and check whether the variety {ck(x, y), ck−1(x, y),
· · · , c0(x, y)} has a real solution. If it has, go to 3.

2. Represent f(x, y, z) as (7) and check whether Ld(x, y, z) has a factor which
does not involve variable z. If it does not have this kind of factors, go to 4.

3. Apply the transformation (8), choose a rational number pair (a, b) such that
(a, b) is not a point on curve Ld(x, y, 1) = 0, where Ld(x, y, z) is the sum
of terms whose degrees equal the total degree of f(x, y, z), and compute the
corresponding new surface F (X,Y,Z) = 0 in the new coordinate system.
Still denote F (X,Y,Z) as f(x, y, z).

4. Compute g(x, y) = Res(f(x, y, z), ∂f(x,y,z)
∂z , z).

5. If g(x, y) is irreducible, return g(x, y) = 0. Else, factor it as g(x, y) =
g1(x, y)m1 ·g2(x, y)m2 ·· · ··gt(x, y)mt , where gi(x, y) is irreducible. Still denote
g(x, y) = g1(x, y) · g2(x, y) · · · · · gt(x, y) and return g(x, y) = 0.
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When f(x, y, z) is reducible as (2), the problem is more complex. We can use
Algorithm 1 to compute its projection curve, but the computation takes much
time. We can check whether each component fi(x, y, z) is a normal surface. If
all components are normal surfaces, we can compute the projection curve of
f(x, y, z) = 0 as follows.

Lemma 2. Let S : f(x, y, z) = 0, where f(x, y, z) is defined by (2), n ≥ 2. The
projection curve of S is the curve defined by the square-free part of the following
polynomial.

g(x, y) =
∏

1≤i≤j≤n

Ti,j(x, y), (9)

where Ti,i(x, y) = Res(fi(x, y, z), ∂fi(x,y,z)
∂z , z), Ti,j(x, y) = Res(fi(x, y, z), fj(x,

y, z), z), i, j = 1, · · · , n, i = j.

Proof. By (3) and the property of resultant [25], we can derive that

Res(f(x, y, z),
∂f(x, y, z)

∂z
, z))

= Res(
∏

1≤j≤n

fj(x, y, z),
n∑

i=1

f(x, y, z)

fi(x, y, z)
· ∂fi(x, y, z)

∂z
, z)

=
∏

1≤j≤n

Res(fj(x, y, z),
n∑

i=1

f(x, y, z)

fi(x, y, z)
· ∂fi(x, y, z)

∂z
, z)

= c ·
∏

1≤j≤n

Res(fj(x, y, z),
f(x, y, z)

fj(x, y, z)
· ∂fj(x, y, z)

∂z
, z)

= c ·
∏

1≤j≤n

(Res(fj(x, y, z),
∂fj(x, y, z)

∂z
, z) ·

∏
1≤i≤n,i�=j

Res(fi(x, y, z), fj(x, y, z), z))

= c ·
∏

1≤i≤n

Ti,i(x, y) ·
∏

1≤i,j≤n,i�=j

Ti,j(x, y),

where c is a constant. It is clear that g(x, y) is a factor of Res(f(x, y, z), ∂f(x,y,z)
∂z

, z)

and any irreducible factor of Res(f(x, y, z), ∂f(x,y,z)
∂z

, z) is contained in g(x, y).
So the projection curve of S is defined by the square-free polynomial whose
components are all the irreducible components of g(x, y). So the lemma holds.

��
If there exists any component which is not a normal surface, take a trans-

formation of coordinate system as (8) to insure that all components are normal
surfaces in the new coordinate system. Then compute the projection curve of the
new surface with the method mentioned above. For any surface f(x, y, z) = 0,
we present the following algorithm to compute its projection curve.

Algorithm 2. The input is a polynomial f(x, y, z). The output is a square-
free polynomial g(x, y), where C: g(x, y) = 0 is the normal projection curve of
f(x, y, z).
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Fig. 1. An irreducible surface

1. Factor f(x, y, z). Suppose f(x, y, z) has a representation as (1), still denote
f(x, y, z) as (2).

2. If n = 1, compute the projection curve of S by Algorithm 1 and return it.
3. Else (n > 1), do

(a) Check whether fi(x, y, z) is a normal surface for all i. If there exists a
component which is not a normal surface, it is clear that we can find a
transformation as (8), such that each component is a normal surface in
the new coordinate system. Still denote the surface as f(x, y, z) = 0.

(b) Compute the projection curve of f(x, y, z) by Lemma 2 and return its
square-free part.

Example 1. Let us consider the following surface.

f(x, y, z) = (y2 + z2 − x2 + 1/2 · x3 − 4)2 − 16 · x2 + 8 · x3 = 0. (10)

It is irreducible and normal. As is shown in Fig. . We can compute its projection
curve by Algorithm 1.

Res(f(x, y, z),
∂f(x, y, z)

∂z
, z) = 4096 · g1(x, y)4 · g2(x, y)2 · g3(x, y) · g4(x, y),

1
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where g1(x, y) = x, g2(x, y) = x − 2, g3(x, y) = 2 · y2 + 8 · y − 2 · x2 + x3 + 8,
g4(x, y) = 2 · y2 − 8 · y − 2 · x2 + x3 + 8. So we can derive its projection curve as
follows.

g(x, y) = g1(x, y) · g2(x, y) · g3(x, y) · g4(x, y). (11)

3 Projection Curve Topology Determination

In this section, we will present algorithms to determine the topology of the nor-
mal projection curve obtained in the preceding section. Such algorithms already
exist([14, 16]). But their outputs do not satisfy the requirement of our algorithm
for the surface topology determination. Also, our algorithm gives an intrinsic
representation for the topology of the given curve.

3.1 Notations

Definition 1. A point P0(x0, y0) is said to be a singularity of an implicit al-
gebraic curve C: g(x, y) = 0 if g(x0, y0) = gx(x0, y0) = gy(x0, y0) = 0, where
g(x, y) is square-free [23].

Let C : g(x, y) = 0 be the normal projection curve. We will consider the part of
C inside a bounding box

B = {(x, y)|xl ≤ x ≤ xr, yb ≤ y ≤ yu}
to be determined later. The intersection points of C and the boundary of B are
called boundary points of C. The part of C inside B (including the boundaries of
B) is denoted as CB.

Definition 2. A plane algebraic curve segment in a finite box is said to be a
complete curve segment(CCS) if it is one of the following cases:

1. An isolated singularity Pi of C : g(x, y) = 0, denoted as CPi
.

2. A continuous curve segment from a singularity or a boundary point to a
singularity or a boundary point, such that there is no singularities of C on
the curve segment between the two endpoints. Denote Ck

i,j to be the k-th
curve segment from the singularity Pi to the singularity Pj; or Ci,j: the
curve segment from the singularity Pi to the boundary point Bj; or B−1

i,j : the
curve segment from the boundary point Bi to the boundary point Bj. Note
that Ck

i,j = Ck
j,i, B−1

i,j = B−1
j,i , Ci,j = Cj,i.

3. A closed continuous curve without singularities, denoted as CQ, where Q is
a point on the curve.

Definition 3. A cell of a plane curve in a bounding box is a closed region whose
boundaries are CCSes or part of the boundaries of the box.

Definition 4. A curve segment sequence of a singularity of a plane curve is an
ordered sequence of CCSes originating from the singularity. They are listed from
left-up in the counter-clockwise order.
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Definition 5. The topological representation of a plane algebraic curve within
a bounding box consists of the following information.

A bounding box: B = {(x, y)|xl ≤ x ≤ xr, yb ≤ y ≤ yu};
Boundary points: {Bi(xBi

, yBi
)(bi)[Bi,j1 ,Cj,i( or B−1

i,j ), Bi,j2 ], i ∈ IB};
Singularities: {Pi(xPi

, yPi
)(ri)[ Curve segment sequence of Pi], i ∈ IS};

CCSes: {Ck
i,j(Cc1 ,Cc2), c1, c2 ∈ IC};

Cells: {Ck[ The ordered boundaries of the cell], k ∈ IC}.
Here (xBi

, yBi
), (xPi

, yPi
) are coordinates of points Bi, Pi, respectively; IS , IB , IC

are indexes of singularities, boundary points and cells, respectively; ri(bi) is the
discriminate distance (a positive number which will be defined below) of singu-
larity Pi(Bi); Cc1 ,Cc2 are two cells beside the CCS Ck

i,j, here Ck
i,j can also be

CCS B−1
i,j ,Ci,j ,CPi

or CQ.

3.2 Topology Determination

If the normal projection curve C : g(x, y) = 0 of S : f(x, y, z) = 0 is irreducible,
then we use the following plane curve topology determination algorithm to com-
pute the topology of C, which is based on the algorithms in [9, 16].

Algorithm 3 (Irreducible algebraic curve topology determination). The
input is an irreducible plane algebraic curve C : g(x, y) = 0. The output is the
topological representation of CB.

1. Compute the discriminant D(y) =
∑m

i=0 diy
i of g(x, y) with respect to x

and let yu be a rational number which is larger than max{|d0|,··· ,|dm−1|}
|dm| .

Then by Cauchy’s inequality, all the roots of D(y) = 0 are in the interval
(yb = −yu, yu).

2. Compute the discriminant D̄(x) of g(x, y) with respect to y and determine its
real roots: α1 < . . . < αs−1. Select two rational numbers xl and xr such that
xl < α1 and xr > αs−1 and let α0 = xl, αs = xr. Now we have determined
the bounding box B. Then all the finite singularities of the curve are in the
box.

3. Compute the real intersection points of g(x, y) = 0 and the lines x− α0 = 0
and x − αs = 0 in the interval [yb, yu] and compute the real intersection
points of g(x, y) = 0 and the lines y − yb = 0 and y − yu = 0 in the interval
(xl, xr). The four vertexes of the box are (xl, yu), (xl, yb), (xr, yu), (xr, yb).
Denote these points in order as Bi, i ∈ IB . Insure that the four endpoints
are not on C. If Bi is between its two adjacent boundary points Bi1 , Bi2 , then
the discriminate distance of Bi is bi = min{‖ BiBi1 ‖, ‖ BiBi2 ‖}. Compute
the discriminate distance for each Bi (not including the vertexes).

4. For every αi(i = 1, · · · , s− 1), do
(a) Compute within B the real roots of g(αi, y), βi,0 < . . . < βi,ti

.
(b) For each point Pi,j = (αi, βi,j), do

i. Count the numbers of branches of C in B to the left and to the right.
Denote Pi,j as Pl(l ∈ IS) in order if gx(αi, βi,j) = gy(αi, βi,j) = 0,
label rl = min{αi−αi−1, αi+1−αi, βi,j−βi,j−1, βi,j+1−βi,j}(βi,−1 =
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an irreducible plane curve

yb, βi,ti+1 = yu) and record an ordered sequence of branches origi-
nating from the singularity from left-up to right-up in the counter-
clockwise order, transform the branches to corresponding CCSes in
the end.

ii. Label each cell in Di = (αi−1, αi)× (yb, yu); combine the two closed
regions sharing the line segment Pi−1,jPi−1,j+1 and relabel the closed
region. If any closed region is a cell, denote it as Ck(k ∈ IC) in order.

iii. Label each curve segment in the interval Di and record the cells
besides it, combine two curve segments(one in Di−1, the other in
Di) if their unique common point Pi,j is non-singular; relabel the
new curve segment and record the cell(s) besides it. Now, we can
obtain a set of CCSes and the corresponding cell(s) besides them.

5. Return corresponding information.

Example 2. Let us consider a component of the projection curve C defined by
(11). Its equation is g3(x, y) = 2 · y2 − 8 · y − 2 · x2 + x3 + 8 (Fig. ).

Following Algorithm 3, we can obtain a finite box B = [−5, 5]× [−5, 5]. The
boundary points are B0, B3 and four endpoints of the box are B1, B2, B4, B5.
We can obtain b0 = 5 + a1, b3 = 5 + a2 (where a1, a2 will be defined in Example
3). And α0 = −5, α1 = 0, α2 = 2, α3 = 5.

Solve g(α1, y) = 0. We obtain one real root y1,0 = 0. The point P0 = (α1, y1,0)
is a singularity of the curve. There are two branches originating from it on
the left side and right side, respectively. The discriminate distance for P0 is 2
(min{α1−α0, α2−α1, yu−y1,0, y1,0−yd}). The closed region in D1 are C0,C1,C2

as shown in Fig. 2. We can check that C1 is a cell.
Solving g(α2, y) = 0, we obtain one point P2,0. It is not a singularity. There

are two branches originating from it on its left side and no branches originating
from it on its right side. There is no boundary points in D2. Therefore we can

2
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connect the branches in order in D2. And the two curve segments from P0 to
P2,0 compose a CCS of the given curve. Denote it as C0

0,0. The closed region in
D2 are C3,C4,C5. C0 and C3, C2 and C5 share common line segments, and we
can combine them as C0,C2, respectively. Since there is no boundary point on
the boundary of D3, and there is no branches originating from P2,0 in D3, the
curve has no points in D3. C0,C2 share common line segments with D3 and we
can combine them as C0. In the end, we obtain the decomposition of the curve
in Fig. 3.

The outputs about the topological representation of the curve are as follows.
The bounding box: B = {(x, y)| − 5 ≤ x ≤ 5,−5 ≤ y ≤ 5}.
Boundary points: {B0(a1, 5)(5 + a1)[B0,1,C0,0, B0,5], B1(−5, 5), B2(−5,−5),
B3(a2,−5)(5 + a2)[B3,2,C0,3, B3,4], B4(5,−5), B5(5, 5)}.
Singularities: {P0(0, 2)(2)[C0,0,C0,3,C

0
0,0,C

0
0,0]}.

CCSes: {C0,0(C0,C1),C0,3(C0,C1),C0
0,0(C0,C2)}.

Cells: {C0[B3,4, B4,5, B5,0,C0,0,C
0
0,0,C0,3], C1[B0,1, B1,2, B2,3,C0,3,C0,0],

C2[C0
0,0]}.

The following algorithm is to determine the topology of any square-free algebraic
curve.

Algorithm 4 (Plane curve topology determination). The input is C :
g(x, y) = 0. The output is the same as Algorithm 3.
1. If g(x, y) is irreducible, determine the topology of C by Algorithm 3.
2. Else (g(x, y) is reducible), suppose g(x, y) has a representation as (4).

(a) Compute a bounding box for each component gi(x, y)(i = 1, · · · ,m);
Compute the intersection points of any two components gi(x, y), gj(x, y)
(i, j = 1, · · · ,m, i = j). Choose a box which contains all boxes and
intersection points as the bounding box of g(x, y) = 0. Compute the
boundary points of g(x, y) = 0. Compute the discriminate distance for
each boundary points.

(b) Separate the vertical lines which have a form as A·x+B = 0 from g(x, y)
if they exist. Of course, we can denote them as Lt(x, y) = x−ct = 0 (t =
0, · · · , L). Denote all the remainder components of g(x, y) as g0(x, y).
Suppose it is g0(x, y) = g1(x, y) · · · gs(x, y), where s = m− L.

(c) Solve Res(gi(x, y), ∂gi(x,y)
∂y , y) = 0 and Res(gi(x, y), gj(x, y), y) = 0 for

all i, j = 0, · · · ,mL(i = j). Put their roots and ct(t = 0, · · · , L) together
and rewrite them as αk(k = 1, · · · , l−1, αk < αk+1). Let α0 = xl, αl = xr

be rational numbers such that α0 ≤ α1, αl ≥ αl−1.
(d) For every αk, to g0(x, y), we can do the same work as Algorithm 3 in

step 4. Note that when αk = ct(t = 0, · · · , L), all the real intersection
points of g0(x, y) = 0 and the line x − αk = 0 in the interval (yb, yu),
denoted as Pk,j(j = 0, · · · , tk), are singularities of g(x, y) = 0, and line
segments Pk,jPk,j+1(j = 0, · · · , tk − 1),Bk,0Pk,0, Pk,tk

Bk,1 are CCSes of
g(x, y) = 0, where Bk,0, Bk,1 are intersection points of the line x−αk = 0
and the boundary of the box. We obtain the topology information of
g(x, y) = 0 in the end.

3. Return the corresponding topological information of C.
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Remark. If C has no critical points (the points which satisfy g(x, y)=gy(x, y)=0)
on C, we can solve g(0, y) = 0. If g(0, y) = 0 has no real roots, solve f(0, 0, z) = 0.
The surface S has no real parts if it has no real roots. And S is topologically
equivalent to n parallel planes if the equation f(0, 0, z) = 0 has n real roots. If
g(0, y) = 0 has real roots y0, · · · , ym, let the finite box be B = [−1, 1] × [y0 −
1, ym + 1], we can obtain the boundary points Bi(i = 0, · · · , 2m + 1) and CCSes
B−1

0,2m+1, B
−1
1,2m, · · · , B−1

m,m+1 of C.

Example 3. Consider the projection curve defined by (11) as an example of a
reducible curve.

Following Algorithm 4, here g1(x, y) and g2(x, y) are vertical lines, we remove
them from g(x, y).

Res(g3(x, y), ∂g3(x,y)
∂y , y) = 16 · x3 − 32 · x2 = 0, whose real roots are 2, 0.

Res(g4(x, y), ∂g4(x,y)
∂y , y) = 16 · x3 − 32 · x2 = 0, whose real roots are also 2,

0. Res(g3(x, y), g4(x, y), y) = −2 · x2 + x3 + 8 = 0, whose real root is x3,4 =
− 1

3 ·
3
√

100 + 12 · √69 − 4

3· 3
√

100+12·√69
+ 2

3 . So we have α0 = −5, α1 = x3,4,

α2 = 0, α3 = 2, α4 = 5.
Then we can obtain the bounding box B = [−5, 5]× [−5, 5] and the boundary

points: B0(2, 5), B1(0, 5), B2(a1, 5), B3(a2, 5), B6(a2,−5), B7(a1,−5), B8(0,−5),
B9(2,−5). Add the endpoints B4(−5, 5), B5(−5,−5), B10(5,−5), B11(5, 5) in
the boundary point list. And b0 = 2, b1 = 2, b2 = a1 − a2, b3 = 5 + a2, b6 =

5+a2, b7 = a1−a2, b8 = 2, b9 = 2. Here a1 = −
3
√

235+9·√681
3 − 4

3· 3
√

235+9·√681
+ 2

3 ,

a2 = −
3
√

1315+21·√3921
3 − 4

3· 3
√

1315+21·√3921
+ 2

3 .
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Solving g3(α1, y) · g4(α1, y) = 0, we can get y = −4, 0, 4. They correspond to
P1,0, P1,1, P1,2 in Fig. 4. We can easily find that only point P1,1 is a singularity.
We rename it as P0. Its corresponding positive number is min{4−0, 0−(−4), α2−
α1, α1 − α0} = −α1. We can show that the curve segments in D1 = [α0, α1] ×
[yb, yu] are P̃1,0B7, P̃1,1B6, P̃1,1B3, P̃1,2B2. And C0,6 = P̃1,1B6,C0,3 = P̃1,1B3 are
CCSes of the given curve. The regions in the interval D1 are C6,C1,C0,C2,C9.
Their boundaries are as shown in Fig. 4. And only C0 is a cell. Its boundaries
are C0,3, B3,4, B4,5, B5,6,C0,6.

Solve g3(α2, y) · g4(α2, y) = 0. Its real roots are −2, 2. We can find two sin-
gularities P2,0, P2,1, whose corresponding positive numbers are −α1. We rename
them as P1, P2. In the interval D2 = [α1, α2]×[yb, yu], the curve segments and re-
gions are shown in Fig. 4. We can combine curve segment P̃1,0B7 in D1 and curve
segment ˜P2,0P1,0 in D2 as a CCS C1,7 = P̃2,0B7 and combine regions C3,C6 as
C3. Combine C1,C7 as C1. Combine C2,C8 as C2, and combine C5,C9 as C5.
Since x − α2 is g1(x, y), the line segments P2,0B6, P2,0P2,1, P2,1B1 are CCSes
C1,6,C

0
1,2,C2,1 of g(x, y) = 0. C4 is a cell. The real roots of g3(α3, y)·g4(α3, y) = 0

are -2, 2. And x−α3 is g2(x, y). Following Algorithm 4, we can derive the topol-
ogy of g(x, y) = 0 as Fig. 5. The positive numbers of the five singularities are
−α1,−α1,−α1, 2 and 2 respectively.

The output are as follows.
The bounding box: B = [−5, 5]× [−5, 5].
Boundary points: {B0(2, 5)(2)[B0,1,C4,0, B0,11], B1(0, 5)(2)[B1,2,C2,1, B1,0],

B2(a1, 5)(a1 − a2)[B2,3,C2,2, B2,1], B3(a2, 5)(5 + a2)[B3,4,C0,3, B3,2], B4(−5, 5),
B5(−5,−5), B6(a2,−5)(5 + a2)[B6,5, B6,7,C0,6], B7(a1,−5)(a1 − a2)[B7,6, B7,8,
C1,7], B8(0,−5)(2)[B8,7, B8,9,C3,9], B9(2,−5)(2)[B8,9, B8,10,C3,9], B10(5,−5),
B11(5, 5)}. B4, B5, B10, B11 are vertexes of the box.

Singularities: {P0(α1, 0)(−α1)[C0,3,C0,6,C
0
0,1,C

0
0,2], P1(0,−2)(−α1)[C0

0,1,
C1,7,C1,8,C

0
1,3,C

1
1,3,C

0
1,2], P2(0, 2)(−α1)[C2,2,C

0
0,2,C

0
1,2,C

0
2,4,C

1
2,4,C2,1],

P3(2,−2)(2)[C1
1,3,C

0
1,3,C3,9,C

0
3,4], P4(2, 2)(2)[C1

2,4,C
0
2,4,C

0
3,4,C4,0]}.

CCSes: {C0,6(C1,C0), C0,3(C0,C2), C1,7(C1,C3), C0
0,2(C2,C4), C0

0,1(C4,C1),
C2,2(C2,C5),C1,8(C3,C6),C0

1,2(C4,C8),C2,1(C5,C10), C0
1,3(C6,C7), C1

1,3(C7,C8),
C0

2,4(C8,C9), C1
2,4(C9,C10), C3,9(C6,C11), C0

3,4(C8,C11), C4,0(C10,C11)}.
Cells: {C0[B3,4, B4,5, B5,6, C0,6,C0,3], C1[B6,7,C1,7,C

0
0,1,C0,6], C2[C0,3,C

0
0,2,

C2,2, B2,3], C3[B7,8,C1,8,C1,7], C4[C0
0,2,C

0
0,1,C

0
1,2], C5[C2,2,C2,1, B1,2], C6[B8,9,

C3,9,C
0
1,3,C1,8], C7[C0

1,3,C
1
1,3], C8[C1

1,3,C
0
3,4,C

0
2,4,C

0
1,2], C9[C0

2,4,C
1
2,4], C10[C1

2,4,
C4,0, B0,1,C2,1], C11[B9,10, B10,11, B11,0,C4,0,C

0
3,4,C3,9]}.

4 Space Curve Segmentation and Surface Patch
Composition

In this section, we will determine the position of each space curve segment and
each surface patch of S. The algorithm works as follows:

First, we need to determine the points of S on each line lifted from a boundary
point Bi(x̄i, ȳi)(i ∈ IB) or a singularity Pi(xi, yi)(i ∈ IS) of C: g(x, y) = 0.
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These points are the endpoints of the space curve segments. Second, we need to
determine how many space curve segments originating from each endpoint. Then
we can determine all space curve segments of S. Third, we need to compute the
number of surface patches originating from each space curve segment. Finally, we
can determine the surface patches in each region from bottom to top by pointing
out their boundaries.

4.1 Notations

In order to describe our algorithm clearly, we present the following definitions.
Let us assume that we have already obtained a topological representation for
the projection curve of S.

Definition 6. A complete cylindrical patch (CCP) SCk
i,j is a cylindrical patch

lifted from a CCS Ck
i,j obtained in section 3. Then SCk

i,j = Ck
i,j × [−N,N ],

where N is a positive number that will be defined later. SCi,j, SBi,j, SB−1
i,j ,

SCPi
, SCQi

can be defined similarly.

Definition 7. A cell body is a body lifted from a cell obtained in section 3. We
can denote it as CCi, where Ci is a cell of the projection curve. Two cell bodies
share a CCP as a boundary. When a CCS is an isolated singularity, there is only
one cell body beside the CCP corresponding to the CCS.

Definition 8. A complete space curve segment (CSCS) of S: f(x, y, z) = 0 is a
space curve segment which is an intersection of a CCP and S. We denote it as
Ck,l

i,j (C−1,l
i,j , Bl

i,j , B
−1,l
i,j , Vi,l,C

l
Qi

) if its corresponding CCS in the plane is
Ck

i,j(Ci,j , Bi,j , B
−1
i,j ,CPi

,CQi
), where l is an index starting from bottom to up.

Definition 9. A complete surface patch (CSP) of S: f(x, y, z) = 0 is a surface
patch which is part of S, and its boundaries are several CSCSes. We can denote
it as Sl

i if it is the l-th surface patch in cell body CCi from bottom to up.

Definition 10. A critical curve of a surface is a space curve satisfying
f(x, y, z) = fz(x, y, z) = 0, where (x, y, z) is any point on the curve.

Definition 11. A singular curve of a surface is a space curve, which satisfies
f(x, y, z) = fx(x, y, z) = fy(x, y, z) = fz(x, y, z) = 0 for any point (x, y, z) on
the curve.

Let S be the surface, C the projection curve of S, B the bounding box of C, CB
part of the projection curve within B, Vi,j(or V 0

i,j)(j = 0, · · · , ti) the points of S
on the line lifted from a singularity Pi (or a boundary point Bi)

Definition 12. The topological information of a surface include the following
information:

The point lists: {Vi,j (or V 0
i,j)(j = 0, · · · , ti, i ∈ IS (or i ∈ IB))}, which are

corresponding to certain singularities (or boundary points) of CB. For example,



134 J.-S. Cheng, X.-S. Gao, and M. Li

Bi[V 0
i,0, · · · , V 0

i,ti
], Pj [Vj,0, · · · , Vj,tj

] are point lists corresponding to a boundary
point and a singularity.

The CSCS lists: {The CSCS list corresponding to each line segment Bi,j

and each CCS of CB}. For instance, Bi,j [B0
i,j(V

0
i,0, V

0
j,0), · · · , Bp

i,j(V
0
i,i1

, V 0
j,j1

)],
Ck

i,j [C
k,0
i,j (Vi,0, Vj,0), · · · ,Ck,l

i,j (Vi,i2 , Vj,j2)], where the two points for each CSCS
are their endpoints.

The CSP lists: {The CSPs (including their boundary CSCSes) correspond-
ing to each cell}. For instance, Ci(n){S0

i [The ordered boundary CSCSes of the
surface patch], · · · , Sn−1

i [The ordered boundary CSCSes of the surface patch]}.
The CSCSes lists form a curvilinear wireframe of the surface. The boundaries

of the CSPs in the CSP lists are the CSCSes in the CSCS lists. So they are
determined by the curvilinear wireframe.

4.2 Basic Theorems and Algorithms

Theorem 1. Let S : f(x, y, z) = 0 be a normal surface, C : g(x, y) = 0 the
projection curve computed by Algorithm 2, B the finite box obtained in Algorithm
4 for g(x, y). For any point (x0, y0) inside B, the real roots of f(x0, y0, z) = 0
are finite, that is, there exists a positive number N such that for any real root z0

of f(x0, y0, z) = 0, −N < z0 < N .

Proof. It is clear that there is no surface patch of S which is approaching to
infinity inside B. This is guaranteed by conditions C1 and C2. So the theorem
holds. ��

In fact, we can compute the number N . We can compute the maximum
and minimum of the z-coordinate inside B (including its boundary). We use
equation (10) as an example. As we know, B = [xl, xr]×[yb, yf ] = [−5, 5]×[−5, 5].
Compute the maximum and minimum in z-direction of f(x, y, z) = 0 for (x, y) ∈
[−5, 5]× [−5, 5]. We can use Wu’s finite kernel method([24]). The number with
the largest absolute value is 2 + 5/2 · √14. Choose N to be a rational number
which is larger than the absolute value of the computed number. Here we can
choose N = 12.

Theorem 2. All the notations are with the same meaning as Theorem 1. S and
the part of S in the cube B = B × [−N,N ] have the same topology.

Proof. Denote the part of S inside the cube B as SB. Let B1 be a cube containing
B strictly. We will show that the part of S inside B and the part of S inside B1

have the same topology. This is because, the part of S between B and B1 can be
seen as surfaces (or lines) lifted from the intersection of S and B without adding
new intersections. Topologically, they are the same with cylindrical surfaces.
Hence, adding these surfaces does not change the topology of SB. So the theorem
holds. ��

We further assume that there is no singularities on the CCP lifted from any
CCS of C. In fact, we can find a new coordinate system such that the isolated
singularities and the intersection points of the critical curves of the surface are
projected onto the singularities of the projection curve.
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Definition 13. Given a univariate function P (x), let P0(x) = P (x), P1(x) =
P ′(x) and define the Sturm functions by

Pi(x) = −(Pi−2(x)− Pi−1(x)[
Pi−2(x)
Pi−1(x)

]),

where [Pi−2(x)
Pi−1(x) ] is a polynomial quotient. The chain is terminated when Pn(x) is

a constant. Then P0(x), P1(x), · · · , Pn(x) is the Sturm functions (more details
can be found in [17, 26]) of P (x).

Definition 14. Sign-changing number of Sturm functions of P (x) at point x =
a is the number of sign changes on the Sturm functions of P (x) evaluated at
point x = a. That is, the number of sign changes of P0(a), P1(a), · · · , Pn(a).

The following algorithm is to isolate the real roots of a polynomial T (x) ∈ R[x].
The difference between the algorithm and general algorithm is that the isolated
points of our algorithm is not a root of T (x). For more detail, one can see
[17, 18, 26].

Algorithm 5. (Real Root-Isolating) The input are Sturm functions of a polyno-
mial T (x) and an interval (a, b)(where a, b are rational numbers,T (a) = 0,T (b) =
0, T (x) ∈ R[x]). The output is a series of ordered rational numbers in (a, b), such
that there is a real root of T (x) = 0 between each pair of adjacent numbers.

1. Compute the sign-changing numbers V (a), V (b) of the Sturm functions of
T (x) at x = a, x = b, respectively. V (a) − V (b) is the number of real roots
between (a, b) by Sturm theorem. Let the rational number set be Ns :=
{a, b}. If V (a)− V (b) = 0, return ∅. If V (a)− V (b) = 1, return Ns.

2. When V (a) − V (b) > 1, if T (a+b
2 ) = 0, let c = a+b

2 , else choose another
rational number c near a+b

2 in (a, b) insuring that T (c) = 0.
(a) If V (a)−V (c) > 1 and V (c)−V (b) > 1, Ns := Ns

⋃{c}; let i. a = a, b = c,
respectively, ii. a = c, b = b, respectively, go to 2.

(b) Else if V (a) − V (c) = 1 and V (c) − V (b) > 1, Ns := Ns

⋃{c}; let
a = c, b = b, respectively, go to 2.

(c) Else if V (a) − V (c) > 1 and V (c) − V (b) = 1, Ns := Ns

⋃{c}; let
a = a, b = c, respectively, go to 2.

(d) Else if V (a)− V (c) = 0 and V (c)− V (b) > 1, let a = c, b = b, go to 2.
(e) Else if V (a)− V (c) > 1 and V (c)− V (b) = 0, let a = a, b = c, go to 2.

3. Return the ordered rational numbers Ns.

Example 4. Continuing from Example 3, we want to isolate the points on the
line lifted from P3(2,−2) in Fig. 5. Here the input are f(2,−2, z) = z4 and
(a, b) = (−12, 12). The equation has only one real root z = 0. We can obtain
its isolated points W3,0(2,−2,−12),W3,1(2,−2, 12). There is a point V3,0 of the
surface on the line segment ˜W3,0W3,1 between W3,0,W3,1.
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Given a point, a positive number and a plane curve (the point can be on the
curve or not on the curve), the following algorithm is to find the circle whose
center is the point, which is the minimal circle among the circles tangent to the
curve.

Algorithm 6. The inputs are a plane algebraic curve T (x, y) = 0, a positive
number r and a point P0(x0, y0). The output is a positive number which is equal
to half of the minimal of the extremum distance rmin from P0 to the curve
T (x, y) = 0 and r.

1. Let L(x, y, λ) = (x− x0)2 + (y − y0)2 + λT (x, y).
2. Eliminating x and λ from {2(x−x0)+λTx(x, y), 2(y−y0)+λTy(x, y),T (x, y)}

in the order {λ � x � y}, we can obtained a univariate polynomial P (y).
3. Solve P (y) in the interval (y0−r, y0+r). If there is no real root in the interval,

return r/2; Else, get corresponding xi,j for each real root yi in the interval
(x0 − r, x0 + r). If there is no real roots in the interval, return r/2; else, let
R = mini,j

√
(x− xi,j)2 + (y0 − yi), if R ≤ r, return R/2, else, return r/2.

Remark. The step 2 of this algorithm is based on a method of Wu to find
extremal values. One can find more details in [24].

Example 5. Continuing from Example 4, let g(x, y) be the curve defined by (11),
P3 = (2,−2). The input is g(x, y) and the positive number 2 corresponding to
P3. With this algorithm, we can find that the minimal positive extremum from
P3 to g(x, y) is 2. So the output is 1.

4.3 Compute the Space Curve Segments

To each singularity Pi(xi, yi)(i ∈ IS) (or boundary point Bi(xi, yi)(i ∈ IB))of
g(x, y) = 0, there is a sequence of CCSes Ck1

i,j1
, · · · ,Ckt

i,jt
originating from it. Here

the CCSes in the sequence can also be Ci,j or boundary line segments Bi,j (for Bi

only). Lifting them up, we can obtain a sequence of CCPs SCk1
i,j1

, · · · , SCkt
i,jt

. The
point Pi(xi, yi) corresponds to a vertical line {x = xi, y = yi}. There are some
points Vi,j(j = 0, · · · , si) of S on the line. There are some CSCSes Ckl,m

i,jl
(m =

0, · · · , ti,j,k) on each CCP SCkl
i,jl

(l = 1, 2, · · · , t) originating from Vi,j . We need
to determine the CSCSes originating from each Vi,j on each CCP. The following
algorithm is to do this.

Algorithm 7. The inputs are a real algebraic surface S : f(x, y, z) = 0, its pro-
jection curve C : g(x, y) = 0, a point Pi(xi, yi) on C, the discriminate distance
ri of Pi and a sequence of CCSes {Ck1

i,j1
, · · · ,Ckt

i,jt
} originating from Pi. The

outputs are a sequence of points Vi,j(j = 0, · · · , si) of S on the line lifted from
Pi, a set of sequences of CSCSes {Ckl,m

i,jl
,m = 0, · · · , ti,j,k} for each Ckl

i,jl
. Note

that we only know one endpoint of the CSCSes. But we can compute the corre-
sponding information for the other endpoint by this algorithm, then the CSCS is
determined.
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1. Isolate the real roots of f(xi, yi, z) = 0 by Algorithm 5 and obtain the
isolating values zi,0, zi,1, · · · , zi,si

. Denote (xi, yi, zi,j) as Wi,j . There exists
a point of S, Vi,j , which is on the line {x = xi, y = yi} and between points
Wi,j and Wi,j+1. For an instance, please see Fig. 6.

2. From ri, Pi, g(x, y) = 0, we can obtain a positive number Ri by Algorithm
6. It is clear that the number of intersection points of the circle (x− xi)2 +
(y− yi)2 = r2(0 < r ≤ Ri) and C is equal to the number of the CCSes in the
input sequence.

3. In plane z = zi,j(j = 0, 1, · · · , si), from ri, Pi, f(x, y, zi,j) = 0, we can ob-
tain a positive number ri,j by Algorithm 6. Still denote the minimal among
{Ri, ri,0, · · · , ri,si

} as ri(ri ≤ Ri).
4. Compute the real intersection points of the equations {(x−xi)2 +(y−yi)2 =

r2
i , g(x, y) = 0}. We can determine a point P kl

i,jl
on Ckl

i,jl
, l = 1, · · · , t. Denote

them as {P k1
i,j1

, P k2
i,j2

, · · · , P kt
i,jt
}.

5. For each P kl
i,jl

(xi,jl,kl
, yi,jl,kl

)(l = 1, · · · , t), compute the number of real roots
of f(xi,jl,kl

, yi,jl,kl
, z) = 0 in the interval (zi,j , zi,j+1)(j = 0, 1, · · · , si− 1). It

is the number of CSCSes originating from Vi,j on the CCP SCkl
i,jl

. So we can
determine the CSCSes on each CCP: one of their two endpoints is on the
line lifted from Pi. Their order on the CCPs is from bottom to top. Denote
them as Ckl,m

i,jl
. If there does not exist a real root in the interval (zi,0, zi,si

),
delete the CCS from the topology information and combine the cells divided
by it.

6. Return the corresponding information.

Remark. In Algorithm 7, if the singularity is an isolated point of C, we need not
to compute it by this algorithm. If the input sequence of CCSes may include CCS
like Ci,j (the endpoints are a singularity and a boundary point), the algorithm
is also valid. The CSCSes on the CCP SCi,j are determined by computing Pi

with this algorithm. For a boundary point, the algorithm is also valid. Since the
numbers of CSCSes originating from the points of S on the line lifted from Pi, Pj

are the same, we can determine all the CSCSes on SCk
i,j after we compute Pi, Pj

for the surface with this algorithm.

Theorem 3. Algorithm 7 provides the correct output.

Proof. We will prove that we can obtain what we want from Algorithm 7. From
step 2 and step 3, it is clear that there is no other critical curves of S in the
cylindrical body D = {(x, y, z)|(x − xi)2 + (y − yi)2 ≤ r2

i ,−N < z < N},
which can be projected onto the XY-plane except {Ck1

i,j1
, · · · ,Ckt

i,jt
}. And the

discs {(x, y, zi,j)|(x − xi)2 + (y − yi)2 ≤ r2
i }(j = 0, · · · , si) isolate the CSCSes

originating from each V i, j(j = 0, · · · , si − 1) on each CCP SCkl
i,jl

(l = 1, · · · , t)
in D. Then we will prove that the number of CSCSes originating from Vi,j(j =
0, · · · , si−1) on the CCP SCkl

i,jl
(l = 1, · · · , t) is equal to the number of real roots

of equation f(xi,jl,kl
, yi,jl,kl

, z) = 0 in the interval (zi,j , zi,j+1)(j = 0, 1, · · · , si−
1). Since the total number of CSCSes originating from Vi,j for each j is equal
to the number of CSCSes originating from the points of S on the line lifted
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1

1,3P
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1,3C

1,1
1,3C
1,0
1,3C

3,0V
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3,0W

3P

1P

3P

1P

Fig. 6. Compute P3 with Algorithm 7

form Pjl
, each CSCS originating from Vi,j should connect one point on the line

lifted from Pjl
. So if the conclusion is not right, there must exist a point on

one CSCS originating from Vi,j in D, which is also a point on a critical curve
of S. Projecting the critical curve onto the XY-plane, it must share a singular
point with CCS Ckl

i,jl
. This is in contradiction with the given condition. So the

algorithm is valid. ��

Example 6. Continuing from Example 5, let us consider P3 with this algorithm.
The inputs are f(x, y, z) = 0, g(x, y) = 0, P3(2,−2)(2)[C1

1,3,C
0
1,3,C3,9,C

0
3,4]. We

have known that there is only one real point V3,0 of the surface on the line lifted
from P3 and R3 equals 1. Its isolated points are W3,0(2,−2,−12),W3,1(2,−2, 12)
(Fig. 6). In step 3, we can obtain 1 by Algorithm 6 if the input is 2 and
f(x, y,−12)(or f(x, y, 12)). So r3 = 1. In order to illustrate our method simply,
we choose the discriminate distance as a number less than 1:

√
13/4. Solving

the equations {(x− 2)2 + (y + 2)2 − 13/16 = 0, g(x, y) = 0}, we can obtain the
following points: (3

2 ,− 5
4 ), (3

2 ,− 11
4 ), (2,−2 −

√
13
4 ) and (2,−2 +

√
13
4 ). Compar-

ing their coordinates and the curve segment sequence of P3, we can find that
they correspond to the CCSes C1

1,3,C
0
1,3,C3,9,C

0
3,4, respectively. Denote them as

P 1
1,3, P

0
1,3, P

−1
3,9 , P 0

3,4. Then compute the number of real roots of f( 3
2 ,− 5

4 , z) = 0,

f( 3
2 ,− 11

4 , z) = 0, f(2,−2−
√

13
4 , z) = 0 and f(2,−2 +

√
13
4 , z) = 0 in the interval

(−12, 12). They are 3, 1, 0, 2, respectively. This is shown in the left part of Fig.
6. That means the numbers of the CSCSes originating from V3,0 on the CCPs
SC1

1,3, SC0
1,3, SC3,9, SC0

3,4 are 3, 1, 0, 2, respectively. There is no real points of
the surface on the line lifted from the point P−1

3,9 which is on the CCS C3,9. So we
need to delete the boundary point B9, CCS C3,9 from the topology information of
C : g(x, y) = 0 and combine the cells C6 and C11 as C6. V3,0 is one endpoint of the
CSCSes C1,0

1,3 ,C1,1
1,3 ,C1,2

1,3 ,C0,0
1,3 ,C0,0

3,4 ,C0,1
3,4 . As is shown in the right part of Fig. 6.
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Fig. 7. Topology determination of the projection curve of a surface

The output is {V3,0{C1
1,3(P

1
1,3(

3
2 ,− 5

4 ))[C1,0
1,3 ,C1,1

1,3 ,C1,2
1,3 ], C0

1,3(P
0
1,3(

3
2 ,− 11

4 ))[C0,0
1,3 ],

C0
3,4(P

0
3,4(2,−2−

√
13
4 ))[C0,0

3,4 ,C0,1
3,4 ]}}.

After computing all boundary points and singularities of C by Algorithm 7,
we can determine the position of all CSCSes of S. And the projection curve of
the surface is simplified as Fig. 7.

4.4 Compute the Surface Patches

Now, we need to compute the numbers of CSPs originating from each CSCS in
the two cell bodies connected with the CCP which the CSCS lies on respectively.
The following algorithm is for the purpose.

Algorithm 8. The inputs are a real algebraic surface S : f(x, y, z) = 0, the
projection curve C : g(x, y) = 0 of S, a CCS Ck

i,j (or Ci,j) on C and two cells
beside it: Ck1 ,Ck2 , a non-singular point on the CCS: P k

i,j (or P−1
i,j )(x0, y0) and

a sequence of CSCSes {Ck,m
i,j ,m = 0, · · · , li,j,k − 1} on the CCP lifted from the

CCS. The output are two ordered number lists of CSPs originating from each
CSCS of the sequence in the two cell bodies from bottom to top respectively.

1. Compute the tangent line of C at point P k
i,j ; compute the vertical line of the

tangent line at P k
i,j and parameterize it as (ta + x0, tb + y0).

2. Compute the real roots of the equation g(ta + x0, tb + y0) = 0. Record the
root whose absolute value is the minimal among the nonzero real root(s). If
the root does not exist, denote r as a constant, such as 1, else denote r as
the absolute value of the root with minimal absolute value.
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3. Isolate the real roots of f(x0, y0, z) = 0 by Algorithm 5, to obtain a sequence
of rational number {z0, z1, · · · , zli,j,k

}.
4. Compute the real roots of the equation f(ta + x0, tb + y0, zi) = 0 for each

i = 0, 1, · · · , li,j,k. Record the root whose absolute value is the minimal
among the real root(s). Denote the absolute value of the root as ri. Let
R = min{r, r0, r1, · · · , rli,j,k

}/2.
5. Compute the number of real roots of f(Ra+x0, Rb+y0, z) = 0 and f(−Ra+

x0,−Rb + y0, z) = 0 in the interval (zm, zm+1)(m = 0, · · · , li,j,k − 1) respec-
tively. They are the numbers of CSPs originating from the CSCS Ck,m

i,j in
the cell bodies CCk1 ,CCk2 .

6. Return the corresponding information.

Remark. If the CCS is an isolated singularity of C, we need only to lift the point
up, isolate the real roots of S on the line obtained in Algorithm 5, and find a line
segment (its direction is parallel to XY-plane) which passes through the point
as Algorithm 8. Then we can easily determine the number of CSPs originating
from the points of S on the lifted line. If the CCS is a closed curve, Q is a point
on the CCS, we can also easily compute the number of CSPs originating from
the CSCSes on the CCP lifted from the CCS like Algorithm 8.

Theorem 4. Algorithm 8 provides the correct output.

Proof. The proof for this algorithm is same to the one for Algorithm 7 and is
much easier. In this algorithm, we just replace the discs in Algorithm 7 with line
segments. ��

Example 7. Continuing from Example 6, we will compute the number of CSPs
originating from the CSCSes on the CCP SC0,3 as an example for this algo-
rithm. The inputs are g(x, y) = 0, f(x, y, z) = 0, C0,3(C0,C2)[C

−1,0
0,3 (V0,0, V

0
3,0),

C−1,1
0,3 (V0,1, V

0
3,1), C−1,2

0,3 (V0,2, V
0
3,2)], P−1

0,3 (−2,−2 + 2 · √2). In step 1, we can ob-
tain the line (5 · t− 2, 2 · √2 · t− 2 + 2 · √2). Isolating f(−2,−2 + 2 · √2, z) = 0,
we can obtain −12,−2, 5, 12. We can find that R is a positive number more than
1
20 . In order to simplify our illustration, here we choose 1

20 as R. Computing the
number of real roots of f( 1

20a + x0,
1
20b + y0, z) = 0 and f(− 1

20a + x0,− 1
20b +

y0, z) = 0 in the interval (−12,−2), (−2, 5), (5, 12), respectively, we can obtain
{1, 0, 1}, {1, 2, 1}. It means that there are 1, 0, 1(1,2,1) CSP(s) originating from
the CSCSes C−1,0

0,3 ,C−1,1
0,3 ,C−1,2

0,3 in the cell body lifted from C2(C0), respectively.
As is shown in Fig. 8. The output is C0,3(C

−1,0
0,3 , C−1,1

0,3 , C−1,2
0,3 ){C0[1, 2, 1], C2[1, 0, 1]}.

Computing all the CSCSes of S with Algorithm 8, we can determine all the
CSCSes and the number of CSPs originating from each CSCS in the two cell
bodies beside it. Then we can form the CSPs of S.

For each cell body lifted from a cell of C, because the number of CSPs origi-
nating from all the CSCSes on each CCPs of the cell body is the same, we can
determine each CSP in the cell body by pointing out its boundaries: CSCSes.

The following algorithm is to determine the CSPs of S by the topology in-
formation of C obtained by Algorithm 4.



Determining the Topology of Real Algebraic Surfaces 141

6B 0P
0,3P –1

3B

C0,3
–1,0

C0,3
–1,1

C0,3
–1,2

Fig. 8. Compute the CCS C0,3 with Algorithm 8

Algorithm 9. The inputs are S: f(x, y, z) = 0 and the output of Algorithm 4.
The output is the topological information of S.

1. Compute all the singularities and boundary points of C by Algorithm 7;
determine all the CSCSes on each CCP lifted from the CCS of C.

2. Compute the number of CSPs originating from each CSCS in two cell bodies
beside it by Algorithm 8.

3. For each cell body lifted from a cell of C, since the number of CSPs originating
from the CSCSes on each CCP of the cell body is the same, we can determine
each CSP by point out its boundaries–CSCSes.

4. Return the corresponding information of S.

Example 8. Continuing from Example 7, we have determined all the CSPs of
S. The set of CSPs of S obtained by Algorithm 9 has the same topology as
S : f(x, y, z) = 0.

For the same example above, the outputs of the surface with Algorithm 9 are
as follows. The figure of this surface is in Fig. 2. The figure of its real projection
curve is as Fig. 7.

Points:
{{B2[V 0

2,0], B3[V 0
3,0, V

0
3,1, V

0
3,2], B4[V 0

4,0, V
0
4,1, V

0
4,2, V

0
4,3], B5[V 0

5,0, V
0
5,1, V

0
5,2, V

0
5,3],
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B6[V 0
6,0, V

0
6,1, V

0
6,2], B7[V 0

7,0], B10[ ], B11[ ]}, {P0[V0,0, V0,1, V0,2], P1[V1,0], P2[V2,0],
P3[V3,0], P4[V4,0]}}.

For example, B3[V 0
3,0, V

0
3,1, V

0
3,2] means that there are three points of S on the

line lifted from B3. They are V 0
3,0, V

0
3,1, V

0
3,2, from bottom to top, respectively.

CSCSes:
{{B2,3[B0

2,3(V
0
2,0, V

0
3,0), B

1
2,3(V

0
2,0, V

0
3,2)],

B3,4[B0
3,4(V

0
3,0, V

0
4,0), B

1
3,4(V

0
3,1, V

0
4,1), B

2
3,4(V

1
3,1, V

2
4,2), B

3
3,4(V

0
3,2, V

3
4,3)],

B4,5[B0
4,5(V

0
4,0, V

0
5,0), B

1
4,5(V

0
4,1, V

0
5,1), B

2
4,5(V

0
4,2, V

0
5,2), B

3
4,5(V

0
4,3, V

3
5,3)],

B5,6[B0
5,6(V

0
5,0, V

0
6,0), B

1
5,6(V

0
5,1, V

0
6,1), B

2
5,6(V

0
5,2, V

0
6,1), B

3
5,6(V

0
5,3, V

2
6,2)],

B6,7[B0
6,7(V

0
6,0, V

0
7,0), B

1
6,7(V

0
6,2, V

0
7,0)],

B7,10[ ],
B10,11[ ],
B11,2[ ]},
{C0,3[C

−1,0
0,3 (V0,0, V

0
3,0),C

−1,1
0,3 (V0,1, V

0
3,1),C

−1,2
0,3 (V0,2, V

0
3,2)],

C0
0,1[C

0,0
0,1 (V0,0, V1,0),C

0,1
0,1 (V0,1, V1,0),C

0,2
0,1 (V0,2, V1,0)],

C0,6[C
−1,0
0,6 (V0,0, V

0
6,0),C

−1,1
0,6 (V0,1, V

0
6,1),C

−1,2
0,6 (V0,2, V

0
6,2)],

C0
0,2[C

0,0
0,2 (V0,0, V2,0),C

0,1
0,2 (V0,1, V2,0),C

0,2
0,2 (V0,2, V2,0)],

C1,7[C
−1,0
1,7 (V1,0, V

0
7,0)],

C2,2[C
−1,0
2,2 (V2,0, V

0
2,0)],

C0
1,2[C

0,0
1,2 (V1,0, V2,0),C

0,1
1,2 (V1,0, V2,0)],

C0
3,4[C

0,0
3,4 (V3,0, V4,0),C

0,1
3,4 (V3,0, V4,0)],

C0
1,3[C

0,0
1,3 (V1,0, V3,0)],

C1
1,3[C

1,0
1,3 (V1,0, V3,0),C

1,1
1,3 (V1,0, V3,0),C

1,2
1,3 (V1,0, V3,0)],

C0
2,4[C

0,0
2,4 (V2,0, V4,0)],

C1
2,4[C

1,0
2,4 (V2,0, V4,0),C

1,1
2,4 (V2,0, V4,0),C

1,2
2,4 (V2,0, V4,0)]}}.

For example, B2,3[B0
2,3(V

0
2,0, V

0
3,0), B

1
2,3(V

0
2,0, V

0
3,2)] means that there are two

CSCSes on the CCP SB2,3: B1
2,3, whose endpoints are V 0

2,0, V
0
3,0 and B1

2,3, whose
endpoints are V 0

2,0, V
0
3,2.

CSPs:
{C0(4){S0

0 [C−1,0
0,3 , B0

3,4, B
0
4,5, B

0
5,6,C

−1,0
0,6 ], S1

0 [C−1,1
0,3 , B1

3,4, B
1
4,5, B

1
5,6,C

−1,1
0,6 ],

S2
0 [C−1,1

0,3 , B2
3,4, B

2
4,5, B

2
5,6,C

−1,1
0,6 ], S3

0 [C−1,2
0,3 , B3

3,4, B
3
4,5, B

3
5,6,C

−1,2
0,6 ]},

C1(2){S0
1 [C−1,0

0,6 , B0
6,7,C

−1,0
1,7 ,C0,0

0,1 ], S1
1 [C−1,2

0,6 , B1
6,7,C

−1,0
1,7 ,C0,2

0,1 ]},
C2(2){S0

2 [C−1,0
0,3 ,C0,0

0,2 ,C−1,0
2,2 , B0

2,3], S1
2 [C−1,2

0,3 ,C0,2
0,2 ,C−1,0

2,2 , B1
2,3]},

C3(0){ },
C4(4){S0

4 [C0,0
0,2 ,C0,0

0,1 ,C0,0
1,2 ], S1

4 [C0,1
0,2 ,C0,1

0,1 ,C0,0
1,2 ],

S2
4 [C0,1

0,2 ,C0,1
0,1 ,C0,1

1,2 ], S3
4 [C0,2

0,2 ,C0,2
0,1 ,C0,1

1,2 ]},
C7(2){S0

7 [C0,0
1,3 ,C1,0

1,3 ], S1
7 [C0,0

1,3 ,C1,2
1,3 ]},

C8(4){S0
8 [C0,0

2,4 ,C0,0
1,2 ,C1,0

1,3 ,C0,0
3,4 ], S1

8 [C0,1
2,4 ,C0,0

1,2 ,C1,1
1,3 ,C0,0

3,4 ],
S2

8 [C0,1
2,4 ,C0,1

1,2 ,C1,1
1,3 ,C0,1

3,4 ], S3
8 [C0,2

2,4 ,C0,1
1,2 ,C1,2

1,3 ,C0,1
3,4 ]},

C9(2){S0
9 [C0,0

2,4 ,C1,0
2,4 ], S1

9 [C0,2
2,4 ,C1,0

2,4 ]}}.



Determining the Topology of Real Algebraic Surfaces 143

P0
B3

B40,0W C0

B6
B5

0,0V0

0,0V
0,1W

0,1V 0,1V0
0,2W

0,2V

0,2V0

0,3W

Fig. 9. The CSPs in the cell body lifted from C0

For example, C0(4){S0
0 [C−1,0

0,3 , B0
3,4, B

0
4,5, B

0
5,6,C

−1,0
0,6 ], S1

0 [C−1,1
0,3 , B1

3,4, B
1
4,5,

B1
5,6,C

−1,1
0,6 ], S2

0 [C−1,1
0,3 , B2

3,4, B
2
4,5, B

2
5,6,C

−1,1
0,6 ], S3

0 [C−1,2
0,3 , B3

3,4, B
3
4,5, B

3
5,6,C

−1,2
0,6 ]}

means that there are four CSPs, S0
0 , S1

0 , S2
0 , S3

0 in the cell body CC0 from
bottom to up. [C−1,0

0,3 , B0
3,4, B0

4,5, B
0
5,6,C

−1,0
0,6 ], [C−1,1

0,3 , B1
3,4, B

1
4,5, B

1
5,6,C

−1,1
0,6 ],

[C−1,1
0,3 , B2

3,4, B
2
4,5, B

2
5,6,C

−1,1
0,6 ], [C−1,2

0,3 , B3
3,4, B

3
4,5, B

3
5,6,C

−1,2
0,6 ] are the boundaries

of S0
0 , S1

0 , S2
0 , S3

0 , respectively. The CSPs in the cell body CC0 are shown in Fig.
9.

5 Main Algorithm

By the discussion in the previous sections, we can present the main algorithm
to determine the topology of an implicit algebraic surface.

Algorithm 10. The input is an implicit algebraic surface S : f(x, y, z) = 0. The
output is a set of surface patches which have the same topology as the original
surface S.

1. Compute the projection curve C: g(x, y) = 0 of S by Algorithm 2.
2. Determine the topology of C by Algorithm 4.
3. Space curve and surface patch segmentation of S by Algorithm 9.
4. Return the corresponding topology information of S.

Example 9. We will illustrate the algorithm with another example defined by

f(x, y, z) = f1(x, y, z) · f2(x, y, z),
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Fig. 10. A reducible surface

4C2C

3C

1C

0C
0,3C

1,4C

QC 2
0,1C1

0,1C0
0,1C

1P

0P

5B
4B

3B
2B1B

0B

Fig. 11. Topology determination of the

projection curve of a reducible surface

where f1(x, y, z) = y2 + (z − 11)2 − 5 · x, f2(x, y, z) = x2 + y2 + (z − 4)2 − 25.
Its figure is in Fig. 10.

Since f1(x, y, z), f2(x, y, z) are normal surfaces, we can derive the projection
curve of S by Algorithm 2.

g(x, y) =
∏

1≤i≤j≤2

Ti,j(x, y)

where T1,1(x, y) = 4 · (y2 − 5 · x), T1,2(x, y) = 73 · x2 + 196 · y2 + 576− 740 · x +
10 · x3 + x4, T2,2(x, y) = 4 · (x2 + y2 − 25).

With Algorithm 4, we can get the topological information of the projection
curve as Fig. 11. We can derive the following information by Algorithm 9.
Points:
{{B0[ ], B1[ ], B2[ ], B3[V 0

3,0], B4[V 0
4,0], B5[ ]}, {P0[V0,0, V0,1], P1[V1,0, V1,1]}}.

CSCSes:
{{B0,1[ ], B1,2[ ], B2,3[ ], B3,4[B0

3,4(V
0
3,0, V

0
4,0), B

1
3,4(V

0
3,0, V

0
4,0)], B4,5[ ], B5,0[ ]},

{C0
0,1[C

0,0
0,1 (V0,0, V1,0)], C1

0,1[C
1,0
0,1 (V0,0, V1,0),C

0,1
0,1 (V0,0, V1,0),C

0,2
0,1 (V0,1, V1,1)],

C2
0,1[C

2,0
0,1 (V0,0, V1,0),C

2,1
0,1 (V0,1, V1,1),C

2,2
0,1 (V0,1, V1,1)], C1,4[C

−1,0
1,4 (V1,1, V

0
4,0)],

C0,3[C
−1,0
0,3 (V0,1, V

0
3,0)],CQ[C0

Q,C1
Q,C2

Q]}}.
CSPs:
{C0(0){ },
C1(2){S0

1 [C0,0
0,1 ,C1,0

0,1 ], S0
1 [C0,0

0,1 ,C1,1
0,1 ]},

C2(4){S0
2 [[C1,0

0,1 ,C2,0
0,1 ], [C0

Q]], S1
2 [[C1,1

0,1 ,C2,0
0,1 ], [C1

Q]],
S2

2 [[C1,2
0,1 ,C2,1

0,1 ], [C1
Q]], S3

2 [[C1,2
0,1 ,C2,2

0,1 ], [C2
Q]]},
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C3(4){S0
3 [C0

Q], S1
3 [C1

Q], S2
3 [C1

Q], S3
3 [C2

Q]},
C4(2){S0

4 [C2,0
0,1 ,C−1,0

0,3 , B0
3,4,C

−1,0
1,4 ], S1

4 [C2,1
0,1 ,C−1,0

0,3 , B1
3,4,C

−1,0
1,4 ]}}.

According to our experiments, the topology determination of the projection
curve is the most time-consuming phase of the algorithm.

6 Conclusion

In this paper, we present an algorithm, which can be used to give a representa-
tion for the topology of an implicit algebraic surface f(x, y, z) = 0. We give a
curvilinear wireframe of the surface and the surface patches of the surface de-
termined by the curvilinear wireframe, which present the same topology as the
surface. Most of the surface patches are curvilinear polygons. If needed, we can
easily modify our algorithm to give a polyhedron which has the same topology
as the surface.

The algorithm mainly involves computation of resultants, determination of
the topology of plane curves, computation of singularities of surfaces and curves,
isolating real roots of univariate equations. Many aspect of the algorithm could
be further improved. This will be done in our later work.

Acknowledgements. Partially supported by a National Key Basic Research
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Abstract. We prove that the level sets of a real Cs function of two
variables near a non-degenerate critical point are of class C [s/2] and apply
this to the study of planar sections of surfaces close to the singular section
by the tangent plane at an elliptic or hyperbolic point, and in particular
at an umbilic point. We go on to use the results to study symmetry sets
of the planar sections. We also analyse one of the cases coming from a
degenerate critical point, corresponding to an elliptic cusp of Gauss on
a surface, where the differentiability is reduced to C [s/4]. However in all
our applications we assume C∞ smoothness.

1 Introduction

The medial axis or skeleton of a closed plane curve γ encode a great deal of in-
formation about the shape of the region enclosed by the curve. This information
has been exploited in many ways1. The medial axis can be defined, for a smooth
curve γ, as the closure of the locus of centres of ‘bitangent’ circles—tangent to γ
in two places—and whose radius equals the minimum distance from the centre
to γ. The symmetry set is the closure of the locus of centres of all bitangent cir-
cles. It thus has a richer structure which underlies the transitions of the medial
axis. See for example [6].

The local structure of the symmetry set of a generic plane curve is of four
kinds: smooth branches, endpoints, cusps and triple crossings. All of these can
be seen in the example of Figure 2. (For medial axes there are only smooth
branches, endpoints and Y-junctions.) Symmetry sets and medial axes of curves
which vary in a generic 1-parameter family γk are well understood provided
the curves of the family remain nonsingular; a complete local classification was
given in [2]. In this paper, we consider instead the family of plane sections γk

of a smooth surface M in 3-space, where the plane moves parallel to itself and

1 Typing ‘medial axis’ into an internet search engine produces hundreds of references,
to character recognition, Voronoi diagrams, interrogation, reconstruction, modifica-
tion and design of shape, etc.

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 147–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Surfaces with the tangent planes at elliptic, hyperbolic, parabolic and hyper-

bolic cusp of Gauss points. The intersections are a point, two smooth transverse curves,

a cusped curve and two tangential curves respectively. Figure produced with MAPLE

becomes the tangent plane to M at a point p for say k = 0. Then the section
γ0 will be singular at the tangency point p. For p an elliptic point γ0 is, locally,
a single point. For p a hyperbolic point γ0 is locally two smooth transversally
intersecting branches, while at an ordinary parabolic point γ0 has an ordinary
cusp at p. See Figure 1, which also shows a ‘hyperbolic cusp of Gauss’ where
the intersection is two smooth tangential branches. See §4.2. In this situation,
the results of [2] are invalid and we need to use other techniques to find out how
the symmetry sets (and medial axes) behave in the family of curves.

The motivation for this work comes from the study of isophote curves of a
2D image, which are sections of an intensity surface in 3-space. Results on the
pattern of vertices (extrema of curvature) and inflexions (zeros of curvature)
of the sections γk have been given in [4] while in [5] there are results on the
patterns of cusps and triple crossings of the symmetry set. Let the surface M
be given locally by an equation z = f(x, y). Then the sections γk are by their
nature given by equations f(x, y) = k, and not by parametrizations γ(t) =
(X(t),Y (t)). Now plotting symmetry sets of parametrized curves is reasonably
straightforward (see §4). But curves given by equations are a different matter
altogether: there is not even any foolproof way to determine how many real
components a curve f(x, y) = k has. Furthermore it may not be feasible to find
an exact parametrization of one component of a curve f(x, y) = k.

In this paper we give a result on parametrizing plane sections of surfaces and
use it to approximate such a section to any desired degree of accuracy. We apply
this to the plotting of symmetry sets and medial axes of the surface sections γk.
In §2 we give the main theoretical result and its proof (Propositions 1-4), in §3
we give the way in which this is implemented in practice, and in §4 we apply the
method to symmetry sets, concentrating in §4.1 on the case of umbilic points
(elliptic points where the principal curvatures are equal). In §4.2 we consider
the case of an ‘elliptic cusp of Gauss’, for which the curves γk are simple closed
curves when k > 0.
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2 Level Sets of Functions

The intuitive idea here that we ‘blow up’ the origin to turn the surface z = f(x, y)
into one with nonsingular sections. We shall take the surface M in Monge form,
that is with

f(x, y) = 1
2 (κ1x

2 + κ2y
2) + b0x

3 + b1x
2y + b2xy2 + b3y

3

+ c0x
4 + c1x

3y + c2x
2y2 + c3xy3 + c4y

4

+ d0x
5 + d1x

4y + d2x
3y2 + d3x

2y3 + d4xy4 + d5y
5 + h.o.t. (1)

For simplicity, consider the case where κ1 and κ2 are > 0 so that, locally to
the origin, z ≥ 0 at points of M . Let us write x = tX, y = tY, z = t2; after
cancellation of t2 the equation z = f(x, y) then becomes

1 = 1
2 (κ1X

2 + κ2Y
2) + t(b0X

3 + . . .) + t2(c0X
4 + . . .) + . . . ,

which is a smooth surface in (X,Y, t)-space whose sections t = constant = 0 are
scaled versions of the sections of M . We proceed to give the formal details of
this procedure in a more general setting and in the next section show how in
practice we have used it.

We prove that the level sets of a real function of two variables near a non-
degenerate critical point are of class C[s/2]−1 if the function is of class Cs. To
this end we consider f ∈ Cs(D), D ⊂ R2 the open unit disc, f(0) = df(0) = 0,
and set q = ∇df(0) to be the hessian of f at the origin. We assume that q is
either positive definite or indefinite. See Proposition 4 below for the case of a
degenerate critical point.

Proposition 1. Assume that q is positive definite and let r0 : S1 → R+, where
S1 ⊂ R2 is the unit circle, be defined by r0(θ) = [q(cos θ, sin θ)]−1/2, θ ∈ S1

corresponding to eiθ.
Then there exists a function r : [0, ε)× S1 → R+ for some ε > 0 with

(a) r ∈ C [s/2]([0, ε)× S1),
(b) r(0, θ) = r0(θ) on S1,
(c) f(t r(t, θ) cos θ, t r(t, θ) sin θ) = t2 on [0, ε)× S1.

Remark: The equation (c) implies that for fixed t ∈ [0, ε), the parametrized
curve θ �→ (r(t, θ) cos θ, r(t, θ) sin θ) is a rescaled level curve of the function f .

Proof. For t > 0 consider the curve

Ct = {f(tx, ty) = t2, z = t2} ⊂ R3
xyz

Consider the surface defined by

Q = {f(
√
|z| x,

√
|z| y) = |z| for z = 0 and q(x, y) = 1 for z = 0}.

We claim that Q is a regular surface of class C [s/2] near {z = 0}∩Q. Given this,
we have Ct = Q ∩ {z = t2}, and since the intersection is transversal (as is seen
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by computing grad f(
√|z| x,

√|z| y)− |z| ), we conclude that Ct ∈ C [s/2] with
uniform bounds. Using the implicit function theorem we derive the existence of
r and hence (a) to (c). Note that now Ct is parametrized by

{(t r(t, θ) cos θ, t r(t, θ) sin θ, t2) for θ ∈ S1}. ��
The claim above follows from the following proposition:

Proposition 2. Let h(x) be a real function of one real variable, h = O(|x|2)
and h ∈ Cl. Then g(x, y) = h(

√|y| x) is of class C [l/2] and g = O(|y|).
Proof. The proof of this proposition follows from Taylor’s formula. ��

Finally, we have the analogous result for q indefinite, which is proved in a
similar way:

Proposition 3. Assume that q is indefinite and of the form q(x, y) = κ1x
2 −

κ2y
2 with κ1 ≥ κ2 > 0. Let S+ ⊂ S1 be defined by q|S+ > 0. For any S0 ⊂

S+, S0 = S+ there exists ε > 0 and r : [0, ε)× S0 → R+ with

(a) r ∈ C [s/2]([0, ε)× S0),
(b) f(t 1√

κ1
r(t, θ) cosh θ, t 1√

κ2
r(θ, t) sinh θ) = t2 on S0 × [0, ε)

(c) r(θ, 0) = 1 on S0. ��

We have a result similar to Proposition 1 in the case of an elliptic cusp
of Gauss. In this case the quadratic terms of f are degenerate, equal to x2

say, so that the surface z = f(x, y) has a parabolic point at the origin. By
making x divide the cubic terms we can still have a closed curve of intersection
f(x, y) = k > 0 provided the terms in x2, xy2, y4 give a positive definite quadratic
form in x and y2. This is called an elliptic cusp of Gauss. The contact of the
surface z = f(x, y) with its tangent plane at the origin is of type A3 in the
notation of Arnold. See for example [1, 7] for many geometrical properties of
these points.

Proposition 4. Assume that f ∈ Cs(D) and let the point 0 ∈M be an elliptic
cusp of Gauss and κ1 > 0. Set q(x, y) = 1

2κ1x
2 + b2xy2 + c4y

4, with b2
2 < 2κ1c4.

Let r0 : S1 → R+ be defined by r0(θ) = q(cos θ, sin θ)−1/4. Then there exists a
function r : [0, ε)× S1 → R+ for some ε > 0 with

(a) r ∈ C [s/4]([0, ε)× S1),
(b) r(0, θ) = r0(θ) on S1,
(c) f((t r(t, θ))2 cos θ, t r(t, θ) sin θ) = t4 on [0, ε)× S1.

Proof. The rescaling here is nonhomogeneous and given as follows. Let

Ct = {f(t2x, ty) = t4, z = t4} ⊂ R3
xyz.

Consider the surface defined by

Q = {f(|z| 12 x, |z| 14 y) = |z| for z = 0 and q(x, y) = 1 for z = 0}.
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Now Q is a regular surface of class C [s/4].This follows from a result analogous
to Proposition 2. ��
Remark: For a fixed value of t, we are parametrizing the level set f(x, y) = t4

not in ‘polar coordinates’ where each ray from the origin intersects the curve in
one point, but by means of parabolas of the form y2 = kx for constants k.

3 Finding the Parametrization in Practice

All functions and surfaces from now on will be assumed smooth of class C∞,
that is s =∞ in the Propositions of §2.

We seek to approximate the sections f(x, y) = k of the surface M up to a
suitable order. Let M be given in Monge form (1). As in §2 the two cases (i)
elliptic: κ1 > 0,κ2 > 0 and (ii) hyperbolic: κ1 > 0,κ2 < 0 are different: in the
former case the sections f(x, y) = k are, locally to the origin, closed curves for
small k > 0 whereas in the latter case they are open curves extending to infinity
for both signs of k.

In this article our applications will concentrate on the cases where the inter-
section is a closed curve, but we give some details of other cases in this section.

• For a hyperbolic point we seek to parametrize the section by

x = t r(t, θ) cosh θ, y = t r(t, θ) sinh θ, z = t2, or
x = t r(t, θ) sinh θ, y = t r(t, θ) cosh θ, z = −t2, (2)

for a suitable function r.
• For an elliptic point we seek to parametrize the section by

x = t r(t, θ) cos θ, y = t r(t, θ) sin θ, z = t2, t > 0, 0 ≤ θ < 2π. (3)

• For an ‘elliptic cusp of Gauss’ we seek to parametrize the section by

x = (t r(t, θ))2 cos θ, y = t r(t, θ) sin θ, z = t4, t > 0, 0 ≤ θ < 2π. (4)

We will write
r(t, θ) = r0 + r1t + r2t

2 + . . . ,

where the ri are functions of θ only. In the elliptic case for small values of k > 0
the section z = k is, locally to the origin, a closed curve and the ri will be
periodic and hence functions of cos θ and sin θ.

We therefore need to express the ri in terms of the Monge form coefficients
κi, bi, ci and so on. This is done by comparison of series, and enables us to
approximate the surface z = f(x, y), and the sections z = constant up to any
desired accuracy.

Consider the terms of degree i in the Taylor expansion of f : this is a homoge-
neous polynomial of degree i in x and y. Denote by pi the function of θ obtained
from this homogeneous polynomial as follows:
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hyperbolic case: replace x by cosh θ and y by sinh θ when z > 0 and
x by sinh θ and y by cosh θ when z < 0;
elliptic case: replace x by cos θ and y by sin θ. Thus
p2 = 1

2 (κ1c
2 + κ2s

2);
p3 = b0c

3 + b1c
2s + b2cs

2 + b3s
3;

p4 = c0c
4 + c1c

3s + c2c
2s2 + c3cs

3 + c4c
4;

p5 = d0c
5 + d1c

4s + d2c
3s2 + d3c

2s3 + d4cs
4 + d5s

5;
and so on,
where
hyperbolic case: c = cosh θ, s = sinh θ if z > 0 and c = sinh θ, s = cosh θ if z < 0,
elliptic case: c = cos θ and s = sin θ.

Hyperbolic Case. By substitution in the Monge form (1), we obtain in suc-
cession the following formulas.
r0 = 1√

p2
when z > 0 and r0 = 1√−p2

when z < 0 ;
r1 = − 1

2r0p2
r2
0p3;

r2 = − 1
2r0p2

(r4
0p4 + 3r2

0r1p3 + r2
1p2);

r3 = − 1
2r0p2

(2r1r2p2 + r5
0p5 + 3r2

0r2p3 + 3r0r
2
1p3 + 4r3

0r1p4);
r4 = − 1

2r0p2
(5r4

0r1p5 + 4r3
0r2p4 + 2r1r3p2 + 6r2

0r
2
1p4 + r2

2p2 + 6r0r1r2p3

+ 3r2
0r3p3 + r3

1p3 + r6
0p6);

r5 = − 1
2r0p2

(3r0r
2
2p3 + 3r2

1r2p3 + 6r0r1r3p3 + 3r2
0r4p3 + 12r2

0r1r2p4

+ 4r3
0r3p4 + 4r0r

3
1p4 + 6r5

0r1p6 + 5r4
0r2p5 + 10r3

0r
2
1p5 + 2r1r4p2 + 2r2r3p2);

etc.

Taking the quadratic terms of the surface to be x2 − α2y2 where α > 0, we
have

r2
0 =

1
(1− α2) cosh2 θ + α2

(z > 0); r2
0 =

1
1− (1− α2) cosh2 θ

(z < 0).

When z > 0, the expression for r2
0 is > 0 for all θ when 0 < α ≤ 1, but for

α > 1 we need cosh2 θ < α2

α2−1 , that is 1 ≤ cosh θ < α√
α2−1

.
When z < 0, the expression for r2

0 is > 0 for all θ when α ≥ 1 but if 0 < α < 1
we need 1 ≤ cosh θ < 1√

1−α2 .

Elliptic Case. This is much simpler because, as above, we can expect a global
parametrization of the closed curves f(x, y) = k, locally to the origin, for k > 0.
The formulae for pi are given above and those for ri are exactly the same as for
the hyperbolic case, except that, for z > 0 only,

r2
0 =

2
κ1 cos2 θ + κ2 sin2 θ

.

Note that we are assuming κ1 > 0,κ2 > 0 since the surface is assumed to be
above the plane z = 0 close to the origin. Thus r0 is always real.

When the origin is an umbilic point, then κ1 = κ2 = κ, say, and r2
0 = 2

κ , a
constant. Indeed, we always scale the variables so that the quadratic terms of f
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are x2 +y2 and then r2
0 has the constant value 1 and we can take r0 = 1 without

loss of generality.

Elliptic Cusp of Gauss Case. The relevant parametrization here is (4), and
we apply Proposition 4. For a cusp of Gauss, after renaming axes if necessary,
we have

κ1 = 0, κ2 = 0, b3 = 0 and
{

b2
2 < 2κ1c4 elliptic cusp,

b2
2 > 2κ1c4 hyperbolic cusp.

(5)

Consider the elliptic case. The expansion of the function r in Proposition 4 is
obtained by a ‘weighted’ version of the method used in the previous cases. This
time let pi, i ≥ 4, be the result of substituting x = cos θ, y = sin θ in the terms
of f of weighted degree i, where x has weight 2 and y has weight 1. Thus writing
c = cos θ, s = sin θ we have
p4 = 1

2κ1c
2 + b2cs

2 + c4s
4 = q(c, s) (see Proposition 4)

p5 = b1c
2s + c3cs

3 + d5s
5

and so on. Writing r = r0 + r1t + r2t
2 + r3t

3 + . . . as before, where each ri is a
function of θ only, we find on substitution
r4
0 = 1/p4,

4p4r1 + r2
0p5 = 0, from which we solve for r1,

4p4r0r2 + 6p4r
2
1 + 5p5r

2
0r1 + p6r

4
0 = 0, from which we solve for r2,

and so on. The assumption of an elliptic cusp of Gauss guarantees that p4 is
nonzero for all values of θ.

The same ideas can be used in principle to parametrize the sections near a
hyperbolic cusp of Gauss. It is not difficult to show that in this case (where
b2
1 > 2κ1c4) the expression p4 above vanishes for exactly four values of θ in the

range 0 < θ < 2π. In increasing order these are of the form 0 < θ1 < θ2 < θ3 =
2π − θ2 < θ4 = 2π − θ1 < 2π. In the ranges from θ1 to θ2 and from θ3 to θ4 the
expression p4 is negative and in the other two ranges it is positive. Then we can
use
x = t2r2 cos θ, y = tr sin θ, z = −t4 in the first two ranges and
x = t2r2 cos θ, y = tr sin θ, z = t4 in the other two ranges,
determining r exactly as before, except that r4

0 = −1/p4 when p4 < 0. Needless
to say this case is much more delicate than the elliptic case since the branches
are not closed and the relationship between the value of t and the closeness of
fit obtained by taking say four terms of the approximation to r will be difficult
to determine. An example is shown in Figure 4.

4 Applications to Pre-symmetry Sets and Symmetry
Sets

Let γ be a smooth parametrized plane curve. We seek first the ‘pre-symmetry set’
which is the set of parameter pairs (u1, u2) such that there exists a circle tangent
to γ at γ(u1), γ(u2). The pre-symmetry set is symmetric about the ‘diagonal’
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u1 = u2. A convenient way to find these pairs is to look for solutions of the
equation given by a scalar product

(γ1 − γ2) · (T1 −T2) = 0, (6)

where γi = γ(ui) and Ti is the unit oriented tangent to γ at γi. These solutions
are precisely the pairs required, together with any pairs where T1 = T2: parallel
oriented tangent pairs. For a closed convex curve the only such pairs arise from
u1 = u2 and these are easily identified as the diagonal. When a closed curve has
inflexions other pairs with T1 = T2 will be present. We need to beware of these
when interpreting the pre-symmetry set. The pre-symmetry set contains much
information about the symmetry set. Crossings of the diagonal correspond to
endpoints of the symmetry set and horizontal or vertical tangents correspond to
cusps.

Secondly we want to plot the centres of the bitangent circles identified above.
There are many ways to do this but here is a convenient one, couched in the
language of complex numbers. Let c be the centre of the circle. Then, for some
angle θ,

(γ2 − c) = eiθ(γ1 − c), T2 = eiθT1.

Then, as complex numbers, we have by dividing these equations c = (γ2T1 −
γ1T2)/(T1 −T2). Note that if T1 = T2, or, in practice, if these are sufficiently
close together, and γ1 = γ2, then c is very far away and it will not appear on
the diagram of the symmetry set.

The above has been implemented in the Liverpool Surfaces Modelling Pack-
age (LSMP, [8]), also known as SingSurf. Note that it is necessary for γ to be
parametrized, which is the motivation for the theoretical results given in §2. We
give below examples of umbilic points and elliptic cusps of Gauss (the latter
obtained for the present by a different method). We shall give examples of hy-
perbolic points elsewhere. See [4, 5] for other methods and theoretical results
related to the examples below.

4.1 Umbilic Points

Elliptic points for which the principal curvatures κi as in (1) are unequal make
rather uninteresting examples since the intersection f(x, y) = k is a curve which
is very nearly an ellipse, having exactly four vertices. The symmetry set has two
smooth branches and the medial axis has one smooth branch, as for an ellipse.
We concentrate here on the case of an umbilic point, where κ1 = κ2, and without
loss of generality we can take these both equal to 1 by scaling the surface. Thus
the equation of the surface has the form

z = x2 + y2 + b0x
3 + b1x

2y + b2xy2 + b3y
3 + h.o.t.

By a technique explained in [4] we can find the locus of vertices of the family
of curves f(x, y) = k for k > 0, and in [5] there are results on triple intersections
and cusps of the symmetry set. We shall not recall these in detail here but will
point out how they are verified by the example. Clearly any rotation about the



Level Sets of Functions and Symmetry Sets of Surface Sections 155

Fig. 2. The umbilic case. Top left: several level sets f(x, y) = x2+y2+x3+2x2y+xy2−
3y3 = k for k from 0.001 to 0.018. The curve becomes more circular as k decreases. The

thick curves are the locus of vertices, obtained as in [4]. Notice that if k is too big then

the level set ceases to be closed. Top right: The symmetry set and (boxed insert) the

pre-symmetry set of the curve f = k for a small enough value of k (0.01 in fact) that the

structure has stabilised. The heavily drawn part of the pre-symmetry set corresponds

to the Y-shaped medial axis. The curve f = k was parametrized by the method of §3,

using 10 terms. Bottom left: A closeup of the central part of the symmetry set; note

the six cusps and two triple crossings. The medial axis is drawn heavily. Bottom right:

The approximations to f(x, y) = 0.01 given by taking 1, 3, 4 and 10 terms as in §3:

the outermost curve is for 10 terms and is essentially indistinguishable from the exact

solution
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z-axis will leave the equation of the surface in the same form as above. If we
rotate to make b0 = b2 then it can be shown that the three branches of the vertex
locus make angles with the x-axis which are multiples of 60◦, as in Figure 2, top
left. We pause here to establish the existence of such a rotation.

Lemma 1. Let f be given by f(x, y) = x2 + y2 + b0x
3 + b1x

2y + b2xy2 + b3y
3+

h.o.t. Then we can rotate the coordinates in the x, y plane so that in the new
coordinates u, v, the function f takes the form f = u2 + v2 + B0u

3 + B1u
2v +

B0uv2 + B3v
3+ h.o.t.

Proof. We rotate by an angle φ. Expressing f in terms of the new coordinates
(u, v), amounts to replacing x by u cos φ + v sin φ and y by −u sin φ + v cos φ in
the expression for f(x, y). The new expression for f is of the form
f = u2 + v2 + B0u

3 + B1u
2v + B2uv2 + B3v

3+ h.o.t., where
B0 = b0 cos3 φ− b1 cos2 φ sin φ + b2 cos φ sin2 φ− b3 sin3 φ,
B2 = 3b0 cos φ sin2 φ− b1 sin3 φ + 2b1 cos2 φ sin φ− 2b2 cos φ sin2 φ

+b2 cos3 φ− 3b3 cos2 φ sin φ.
We need to show the existence of an angle φ0 for which B0 = B2. Substitute

U = tan(φ
2 ) and write p = b2 − b0, q = b3 − b1. Then the equation B0 = B2

reads
pU6 + 6qu5 − 15pU4 − 20qU3 + 15pu2 + 6qU − p = 0.

Note that the equation has pairs of roots of the form U,−1/U , corresponding
to solutions φ, φ + π. Of course, if p = 0 we can take φ = 0. Otherwise the
discriminant of this degree 6 equation is a positive constant times (p2 + q2)5 and

Fig. 3. Elliptic cusps of Gauss, examples 1 (left) and 2 (right). The closed curves are

the level sets f(x, y) = k, the other thin curves are the loci of vertices of level sets

and the thick curves are the loci of inflexions. Notice that for small enough k there are

four vertices (as predicted by [4]) but as k increases the level set is first tangent to a

branch of the locus of vertices not local to the origin and then intersects this locus in

two points, giving six vertices
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hence > 0. For a degree six equation this means that there are either two or six
real solutions for U . ��
Remark. We do not know a geometrical interpretation of the distinction be-
tween two and six solutions here. Note that these correspond to respectively one
and three pairs of solutions φ, φ + π. There are a number of situations where
through an umbilic pass one or three geometrically defined curves, for example
ridges and sub-parabolic curves; see [3]. The present case appears to be different
from these.

In Figure 2 we show an example to illustrate the above methods. It confirms
the results of [4] and [5], for small enough k > 0, namely: (a) there are six vertices
on the level set, resulting in three branches, of which one connects a maximum
to maximum of curvature, one a minimum to minimum and one a maximum to

Fig. 4. Left: the thin curve is a level set f(x, y) = k for an elliptic cusp of Gauss as in

Example 1 in the text, and the thick lines are obtained by taking r = r0 and r = r0+r1t

in the approximations described in §3. The approximation obtained by taking three

terms r = r0 + r1t + r2t
2 is visually indistinguishable from the true level set. Right:

the thin curves are two level sets f(x, y) = k for values of k with opposite signs in the

case of a hyperbolic cusp of Gauss f(x, y) = x2 + 3xy2 + 3xy3 + y4. The thick curve is

obtained with the first term r = r0 of the approximation of §3. Clearly there are more

problems here with capturing all the local features of the level sets. Note: in these

figures the horizontal scale has been exaggerated compared to the vertical scale, as an

aid to clarity
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minimum, (b) there are two triple crossings on the symmetry set, (c) there are six
cusps on the symmetry set. Note that full detail is given on the symmetry set since
the polar approximation is smooth and extremely close to the level set f = k.

4.2 Cusps of Gauss

We consider here elliptic cusps of Gauss, as in (5), and assume κ1 > 0 so that
the level set f = k is, locally to the origin, a simple closed curve for small k > 0.
According to the general results of [4] there are four vertices and two inflexions
on this closed curve. (The situation for hyperbolic cusps of Gauss—and indeed

Fig. 5. Example 1 as in Figure 3, with annotated symmetry set and pre-symmetry

set. The dashed section of the pre-symmetry set (boxed inserts) is due to the parallel

tangents arising from the inflexions on f(x, y) = k; see §4. It is ignored when plotting

the symmetry set (main diagram). The arrows indicate that a branch of the symmetry

set goes to infinity when the bitangent circle becomes a bitangent line. The other

endpoints are actual. Top: k is large enough for the level set to have six vertices. The

additional branch of the pre-symmetry set is the loop towards the bottom left of the box

and the corresponding piece of symmetry set is enlarged in the circle. As k decreases

the number of vertices reaches its stable value of 4, as in the bottom figure. The medial

axis for both values of k consists of the branch interior to the curve and the part of

the other branch going to infinity to the left
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Fig. 6. Example 2 of Figure 3. Here k is taken small enough to make the level set have

its stable number of vertices, namely 4. The symmetry set has very much the same

structure as Example 1, that is two simple branches one of which extends to infinity

for hyperbolic points—is much more complicated, with the pattern of vertices
and inflexions giving rise to several cases, which are detailed in [4].) Figure 3
shows several level sets together with the loci of vertices and inflexions, for two
elliptic cusps of Gauss.
Example 1 is f(x, y) = x2 + 2x2y + xy2 + 2x2y2 − xy3 + y4,
Example 2 is f(x, y) = x2 + 2x2y + xy2 + 2x2y2 − xy3 + 6y4.

Figure 4, left, shows the curve of Example 1 together with approximations
obtained as in §3. In this figure the horizontal scale is exaggerated to improve
clarity (otherwise the approximations and the actual curve are too hard to dis-
tinguish!). We also show a hyperbolic cusp of Gauss example in Figure 4, right,
though we do not go on to examine the symmetry set here.

Theoretical results on the symmetry sets of these curves appear to be much
more difficult to obtain than those for elliptic, hyperbolic and ordinary parabolic
points ([4, 5]). Thus evidence gathered from examples is all the more valuable. We
show in Figure 5 the symmetry sets and pre-symmetry sets for the two examples
of Figure 3. In both cases the stable situation as k → 0 is two smooth branches,
one of which extends to infinity. Thus the structure of the symmetry set for
an elliptic cusp of Gauss appears to be very much simpler than for an umbilic
point. In particular there are no cusps and no triple crossings. Furthermore, the
only distinction between the symmetry sets of sections of a surface close to the
tangent plane at an ordinary elliptic point and at an elliptic cusp of Gauss is that
in the latter case one of the branches of the symmetry set extends to infinity. On
the other hand, the distinction between an ordinary elliptic point and an umbilic
is very striking: in the latter case there are six cusps and two triple crossings as
in Figure 2.

5 Conclusion

We have given a simple method of parametrizing closed level set curves f(x, y) =
k to any desired degree of accuracy and used it to compute symmetry sets and
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medial axes of sections of a surface z = f(x, y) in Monge form close to the
tangent plane at an umbilic and an elliptic cusp of Gauss. The method applies
also to level sets f(x, y) = k which are not closed; here the patterns of vertices
and inflexions on the plane sections become much more complicated [4] and there
are many different cases. Furthermore there are technical problems in ensuring
that the approximations capture all the necessary local information about the
level sets. We shall pursue these cases elsewhere.

There are many related questions; for example, when a point on a surface
moves from the hyperbolic region to the parabolic curve, how does the family
of symmetry sets of the parallel plane sections behave? This is tantamount to
considering a one-parameter family of surfaces, that is the curves will now belong
to a two-parameter family. This again is the subject of further work.
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Abstract. Alexa [1] and Ivrissimtzis et al. [2] have proposed a clas-
sification mechanism for bivariate subdivision schemes. Alexa consid-
ers triangular primal schemes, Ivrissimtzis et al. generalise this both to
quadrilateral and hexagonal meshes and to dual and mixed schemes. I
summarise this classification and then proceed to analyse it in order to
determine which classes of subdivision scheme are likely to contain use-
ful members. My aim is to ascertain whether there are any potentially
useful classes which have not yet been investigated or whether we can
say, with reasonable confidence, that all of the useful classes have already
been considered.

I apply heuristics related to the mappings of element types (ver-
tices, face centres, and mid-edges) to one another, to the preservation
of symmetries, to the alignment of meshes at different subdivision lev-
els, and to the size of the overall subdivision mask. My conclusion is
that there are only a small number of useful classes and that most of
these have already been investigated in terms of linear, stationary sub-
division schemes. There is some space for further work, particularly in
the investigation of whether there are useful ternary linear, stationary
subdivision schemes, but it appears that future advances are more likely
to lie elsewhere.

1 Introduction

Alexa [1] and Ivrissimtzis et al. [2] propose a classification of subdivision schemes.
Alexa classifies all triangular primal schemes. Ivrissimtzis et al. extend this both
to quadrilateral and hexagonal base meshes and to dual and mixed schemes (this
terminology is explained later in this section). The extension to quadrilateral
meshes is based on Sloan’s work on 2D lattices [3].

While this classification tells of the existence of many classes of subdivision
scheme, it does not give any indication as to which classes are likely to contain
useful schemes. This paper analyses Ivrissimtzis et al.’s classification with the
intention of determining which classes are likely to contain useful (stationary, lin-
ear) subdivision schemes and which classes are unlikely to contain useful schemes.
I expect that there will be an indeterminate region between those classes which
clearly contain useful schemes and those classes which clearly do not. I assume
that the reader is familiar with subdivision [4].

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 161–183, 2005.
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Fig. 1. Open circles are source vertices; black dots are subdivided vertices. The solid
lines are the source mesh; the dashed lines are the subdivided mesh. At left is a visu-
alisation of QP (1, 1) subdivision as we usually think of it: a new vertex is introduced
at the centre of each quadrilateral, the old vertices are adjusted, and the new grid is
constructed as shown. At right is an equivalent visualisation, this time with the subdi-
vided grid aligned horizontally and vertically. If the edges of the subdivided mesh are
assigned unit length then this is the coordinate system used by Ivrissimtzis et al. for
quadrilateral meshes, which is used throughout this paper

Subdivision schemes may be classified in a variety of ways. Ivrissimtzis, Sabin
and I use a hierarchy of detail, where the top level classes encompass many
subdivision schemes, while the lowest level precisely specifies a single scheme.
The hierarchy has the following levels (this is an expanded form of the list given
by Ivrissimtzis et al. [2]).

Base mesh type. This is the base mesh in the regular case. Most subdivision
schemes are based on either a quadrilateral or a triangular mesh. It is also
possible to base a scheme on an hexagonal mesh, this being the only other
regular monohedral tiling of the plane [5], or on one of the semi-regular
tilings of the plane.

Mapping. This concerns how vertices, face centres, and mid-edges map to one
another from one level of subdivision to the next. Face centres and mid-
edges refer to these points in a regular tiling of the plane. If one applies
subdivision to a regular tiling of the plane, the mapping is exact. In the
case of a general mesh in 3D space, we can think of the regular tiling of the
plane as a parameterization of the actual mesh. Ivrissimtzis et al. [2] classify
schemes based on whether vertices map to vertices or to face centres. In this
paper I extend this to consider what elements are mapped to by face centres
and to consider also the mappings of mid-edges.

Arity. This describes how the source grid maps to the subdivided grid in the
regular case. It can be represented either as a scalar, representing the ratio
of the lengths of edges in the source and subdivided grids, or as an ordered
pair, (n,m), giving the relative position, in the coordinate system of the
subdivided grid, of one source vertex with respect to an adjacent source
vertex (see Fig. 1); in the case of the hexagonal grid, of the position of one
source face centre with respect to an adjacent one (see Fig. 2). Without loss
of generality we can take n > 0 and 0 ≤ m ≤ n. Thus (2, 0) represents
binary subdivision (e.g. Catmull-Clark [6], Doo-Sabin [7], Loop [8]), while
(1, 1) represents the

√
2 class for quadrilateral grids (e.g. simplest [9], Peters-
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Fig. 2. The coordinate systems of the three mesh types. The quadrilateral mesh has
the conventional coordinate system. Each edge is of unit length. The triangular mesh
has axes at an angle π/3 to one another, with all edges of unit length. The hexagonal
mesh is more complex. As with the triangular mesh, the axes are at an angle π/3 to
one another, but it is the face centres which are at integer coordinates; edges are of
length one-third, and vertices are at

(
x + 1

3
, y + 1

3

)
,
(
x + 2

3
, y + 2

3

)
, x, y ∈ ZZ. This

makes the hexagonal mesh a precise dual of the triangular mesh, as illustrated in the
figure. See Appendix A for more on this coordinate system

Shiue [10], Velho [11, 12]) and the
√

3 class for triangular and hexagonal
grids (e.g. Kobbelt’s

√
3 [13], hexagon-by-three [14]). Examples are shown

in Fig. 3.
Footprint. Having chosen values for the above three, the next level is to specify

which new vertices are affected by a given source vertex in the regular case.
This corresponds to specifying which coefficients in the subdivision mask are
non-zero. A larger footprint gives greater freedom in choice of coefficients but
also greater computation and increased difficulties in handling extraordinary
points. Of the well-known published schemes, simplest [9] has the smallest
footprint (4 vertices) while Catmull-Clark [6], butterfly [15], and Kobbelt [16]
have the largest (25 vertices in each case). Amongst more recent schemes,
ternary Loop [17] has 61 non-zero coefficients and interpolating ternary tri-
angular [18] has up to 85. I note that the terminology is not consistent in the
literature, so it is worth saying that I am using Sabin’s definition of the term
mask [19] where the mask shows the contributions made to each new vertex
by a given old vertex, c.f. the stencils where a stencil shows the contributions
made by each old vertex to a given new vertex.

Mask coefficients. The next step is to decide what values the coefficients
should have. For B-spline based and box-spline based schemes, there is no
freedom beyond choosing the particular spline basis, as the coefficients must
be derived from the spline on which they are based. Other schemes have
more freedom (e.g. butterfly [15], Kobbelt [16], interpolating ternary tri-
angular [18]). Amongst other things, the choice of coefficients determines
whether the scheme is interpolating or approximating. Interpolating schemes
(e.g. butterfly [15]) are those where the limit surface is constrained to pass
through the source vertices. Approximating schemes (e.g. Loop [8]) do not
have this constraint.
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QP(1,1)

(0,0)

(1,1)

QP(2,0)

(0,0) (2,0)

QP(2,1)

(0,0)

(2,1)

QD(1,1) TP(1,1) QM( / , / )32 12

Fig. 3. Some example classes. Open circles are source vertices; black dots are subdi-
vided vertices. The solid lines are the source mesh; the dashed lines are the subdivided
mesh. Note how the (n, m) notation gives the coordinates, in the coordinate system
of the subdivided grid, of an adjacent source vertex with respect to an arbitrary ori-
gin source vertex; to illustrate this, the top line of examples has an origin and the
appropriate adjacent source vertex explicitly labelled with their coordinates

Extraordinary cases, boundaries, and creases. The final step is to handle
the extraordinary cases. This is the step which requires a significant amount
of careful thought and analysis. Some schemes have more than one proposed
method for handling extraordinary cases. For example, the schemes based
on the bivariate quadratic and cubic B-splines are commonly known as Doo-
Sabin and Catmull-Clark subdivision respectively but, in fact, each of them
has two variant mechanisms for handling extraordinary cases: one proposed
by Catmull and Clark [6] and one proposed by Doo and Sabin [7]. Boundaries
of the mesh must also be handled as special cases as must creases [4] in
the mesh which are internal edges along which a designer wants reduced
continuity.

Alexa [1] and Ivrissimtzis et al. [2] consider the top three levels of this hier-
archy. This paper analyses that classification in order to ascertain which classes
are likely to contain useful schemes.

2 Summary of the Classification Notation

Ivrissimtzis et al. [2] use notation of the form AB(n,m), where A is the base
mesh type, B the mapping, and (n,m) the arity. Occasionally it is convenient
to use A(n,m) as a shorthand for all classes with the same base mesh type and
arity. The coordinate systems are illustrated in Fig. 2 and example classes are
shown in Fig. 3.
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A can be Q (quadrilateral), T (triangular) or H (hexagonal). The right-
triangle based schemes (e.g. Velho’s 4-8 scheme [11, 12]) are regarded as Q
schemes, because the vertices lie on the quadrilateral grid in the regular case.
The right-triangle tiling, its dual (the octagon-square semi-regular tiling), and
other semi-regular tilings, could be considered as primitive base mesh types in
their own right, but Ivrissimtzis et al. [2] limit the classification to the three
regular base tilings.

B can be P (primal), D (dual) or M (mixed) where primal means that all
vertices map to vertices, dual that all vertices map to face centres, and mixed that
vertices map to a combination of vertices and face centres. This classification as
‘primal’ and ‘dual’ arises from the (2, 0) classes for which the terminology is well
known [20] and where it is related to the concept of the dual graph. Sabin [19]
points out that the classification as ‘primal’ and ‘dual’ is not necessarily par-
ticularly satisfactory for the general case. For example, in Q(2, 0) classes it is
related to the concept of face-splitting (primal) or vertex-splitting (dual), but
this face- or vertex-splitting relationship fails for most other arities. In particu-
lar, Oswald and Schröder note that it fails for (1, 1) classes [21]. The limitations
of this classification are explored further in Sect. 3.3.

(n,m) is the arity, as described in Sect. 1. There are certain quirks in the
specification of arity for the TM and HM (triangular mixed and hexagonal
mixed) classes, which I will gloss over here as they have no impact on the con-
clusions of this paper (for details see Ivrissimtzis et al. [2]). The term arity can
refer to either (n,m) or to the length of the vector, which is

√
n2 + m2 for Q

and
√

(n + m/2)2 + (
√

3n/2)2 for T and H.
The classes of arity (1, 0) represent schemes which do not subdivide. These

can be identity schemes, where the mesh does not change at all, or other point-
processing schemes comparable with filters used in image processing. The sim-
plest application of these would be mesh smoothing.

There is an interesting case with the lowest possible arity class considered by
Ivrissimtzis et al. [2], which is the class of QM

(
1
2 , 1

2

)
schemes. The arity (length

of the (n,m) vector) is 1√
2
, which is less than unity, and therefore this class

represents decimation schemes, rather than subdivision schemes.

3 Heuristic Analysis

This classification allows for a large number of potential subdivision schemes.
This paper asks which of these classes are likely to contain useful schemes and
thus reward further investigation and, conversely, which are likely to have un-
resolvable problems. To facilitate a partition into usable and unusable classes,
I sequentially introduce heuristics, each providing more stringent requirements
on what is meant by “usable”.

An heuristic is a rule of thumb, a guideline which helps us to consider only
the useful alternatives. In subdivision, one early heuristic appears to have been
“only binary schemes are worth considering.” This apparant heuristic has been
seriously challenged by the discovery and development of

√
2 [9, 11, 12, 22, 23],
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√
3 [13, 24] and ternary [17, 25, 18] schemes. They have not, however, completely

invalidated it because all commercial systems are based on binary schemes. An
up-to-date version of this example heuristic would therefore seem to be some-
thing like “only schemes based on Catmull-Clark or Loop are worth considering
in a commercial context.” As with all heuristics, it is possible to argue both for
and against it.

This paper sets out a number of heuristics which are designed to reduce the
enormous number of potential schemes which are allowed for by the classification
mechanism. None of the heuristics is a hard and fast rule and not all of them
have a solid mathematical justification. Nevertheless, I believe that they are rules
of which all practitioners of subdivision become aware, whether consciously or
not. It may well be that, as with the “only binary schemes are useful” heuristic,
some of these heuristics will prove to be false guides. The commentary following
each heuristic therefore incorporates discussion of those situations in which the
heuristic appears to be a less than perfect guide.

3.1 Heuristics Implicit in Ivrissimtzis et al.’s Classification

The first two heuristics are implicit in Ivrissimtzis et al.’s [2] classification sys-
tem. The classification is thus already making assumptions about which types
of subdivision schemes are likely to prove useful. For comparison, Han has pro-
duced a much more restricted classification system for subdivision schemes [26]
in which he implicitly assumes that Heuristics 1–6 are true.

Heuristic 1. Only regular monohedral tilings of the plane are useful as base
meshes.

This limits the base mesh in the regular case to being quadrilateral, triangular,
or hexagonal, with the individual polygons being regular. There are subdivision
schemes which appear to be based on a right-triangle mesh [11, 12] but these
can be treated as Q schemes, because the vertices lie on the quadrilateral grid
in the regular case; the right-triangle concept simply serves to make the ex-
planation and implementation of the scheme somewhat easier in practice. The
right-triangle tiling, its dual (the octagon-square semi-regular tiling), and other
semi-regular tilings, could be considered as primitive base mesh types in their
own right. In addition to semi-regular tilings it may be possible to create a sub-
division scheme based on an aperiodic tiling, such as a Penrose tiling [27]. In any
semi-regular or aperiodic case there would seem to be some difficulty in speci-
fying the base mesh for an object and in extending the subdivision scheme to
handle extraordinary cases, boundaries, and creases. Nevertheless, Ivrissimtzis,
Claes, and I undertook some preliminary work on octagon-square subdivision
schemes in 2003. It was clear from this that some sort of octagon-square subdi-
vision scheme is possible, although the above difficulties would have to be faced;
in particular it is difficult to see how to handle extraordinary faces with an odd
number of edges. It was also clear that the vertices do not lie on one of the three
regular meshes, unlike the right-triangle mesh whose vertices lie on the quadri-
lateral mesh. There may be some advantage in investigating such schemes but
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they seem to pose immense difficulties. Furthermore, the classification mecha-
nism does not admit such schemes. I do not consider them further.

Heuristic 2. Every vertex at one level of subdivision must map to either a ver-
tex or a face centre at the next level.

Ivrissimtzis et al.’s [2] classification assumes this. The second letter in the clas-
sification indicates whether the mapping is to vertices (P ), face centres (D) or
a mixture (M). The initial motivation for this was from consideration of primal
and dual binary schemes which have either a P or D behaviour. I conjecture
that it would be possible to construct a subdivision scheme where vertices at
one level map to some feature other than a vertex or face centre at the next
level, but that it is likely that such a scheme would not prove useful because,
as described under Heuristic 3 below, it may well produce an infinite number of
possible limit surfaces for the same base mesh and, as described under Heuris-
tic 4 below, it would definitely not maintain the rotational symmetries of the
mesh. This conjecture has not been tested but, as with Heuristic 1, there seem
to be great difficulties with such schemes and, furthermore, the classification
mechanism does not admit such schemes. I do not consider them further.

3.2 Heuristics from the Need for a Single Limit Surface

The next two heuristics are based on the desire for a subdivision schemes to
produce a single deterministic limit surface, rather than an infinite number of
possible limit surfaces. This requires that the limit surface depend solely on
the positions and connectivity of the initial base mesh, not on any arbitrary
labelling of vertices. These two heuristics exclude those classes which require
such an arbitrary labelling.

Heuristic 3. All vertices at one level of subdivision must map to the same new
element type at the next level.

The term element refers to a vertex, face centre, or mid-edge. It is reasonable to
require all vertices to be treated identically under refinement because failure to
adhere to this heuristic can lead to there being multiple possible limit surfaces
for a single base mesh. In these cases, the limit surface will, in general, depend
on which particular vertices map to vertices and which do not. This decision
must be made at every subdivision step (see Fig. 4) and therefore there is a
potentially infinite number of different, equally valid, limit surfaces for any base
mesh. In the case of a finite base mesh, one vertex will be chosen as the origin
and all the other vertices will eventually map to no element. There will thus
be as many possible limit surfaces as there are vertices in the base mesh. The
particular limit surface which is arrived at thus depends on something more than
just the location and connectivity of the base mesh’s vertices: this is undesirable.
In addition, it is difficult to see how such schemes could be extended to handle
extraordinary cases, boundaries, and creases.
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Fig. 4. An example of the arbitrary choices which have to be made in a mixed subdi-
vision schemes. This is QM

(
3
2
, 1

2

)
with the rotation direction alternating on alternate

subdivision steps. At the first level of subdivision, half of the vertices map to vertices
and the other half map to face centres. At the next level of subdivision half of those
vertices map to face centres, and so on. In the limit, at most one of the original ver-
tices will map to a vertex and the choice of this original vertex is arbitrary. There
are at least as many limit surfaces as there are original vertices. The mappings for
this subdivision class are: v → v or f (half of the vertices will map to vertices, the
other half to face centres), f → e, e → x. In the limit, all original vertices (but one)
map to no feature at all in the limit surface as they all follow the mapping sequence
v → v → · · · → v → f → e → x → x → · · ·

This heuristic eliminates all mixed classes because, in mixed classes, some
vertices map to vertices and some map to face centres. Therefore all TM , QM
and HM classes are unlikely to produce useful subdivision methods.

It might be sensible to extend this heuristic to say that all face centres must
map to the same element type and that all mid-edges must map to the same
element type. This would eliminate most of the TD classes (all except those
for which n + 2m mod 6 = 0, see Table 3 and Appendix A for the detailed
calculations of these restrictions). However, while I am convinced that this ex-
tension to face centres and mid-edges is sensible, I find it difficult to see how the
above argument regarding multiple limit surfaces can be extended to these cases
and, furthermore, all classes which would be excluded by such an extension are
excluded by the next heuristic anyway.

Heuristic 4. All rotational symmetries should be maintained under refinement.

The requirement is that centres of k-fold rotational symmetry (k-centres) at one
refinement level have k-fold rotational symmetry at the next level. k-centres may,
of course, become centres of higher rotational symmetry provided that the higher
symmetry preserves k-fold symmetry. This heuristic seems reasonable because
a loss of rotational symmetry leads to multiple possible limit surfaces from the
same source mesh. Consider, for example, a vertex in a triangular mesh (6-fold
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rotational symmetry) which maps to a face centre (3-fold rotational symmetry)
under subdivision. There are two possible ways in which this could happen. In
simple terms, the vertex maps either to an up-pointing triangle or to a down-
pointing triangle. The decision as to which vertices map in which way must
be taken at each subdivision step. Even a finite triangular base mesh, with no
extraordinary vertices, will thus have infinitely many possible limit surfaces. As
with Heuristic 3, the limit surface thus depends on something other than just
the location of vertices and the connectivity of the mesh. This is undesirable.

Failing to preserve rotational symmetry also makes it difficult to extend a
scheme to handle irregular cases. A particular example of this is considered
by Dodgson et al. [28] where the TD(1, 1) class is explored and a particular
TD(1, 1) scheme demonstrated; both the particular scheme and the class as a
whole are shown to have severe problems. I conjecture that similar problems
with irregular cases will arise in any scheme which fails to preserve rotational
symmetry. A proof of this conjecture is beyond the scope of this paper because
the “multiple limit surface” argument, above, is sufficient justification for this
heuristic.

Ivrissimtzis et al. [2] suggest that symmetry considerations would be an al-
ternative way to approach the classification problem and it is clear that symme-
try considerations are important in subdivision. Han explicitly uses symmetry
considerations in his alternative classification mechanism for QP and TP sub-
division schemes [26].

The centres of rotational symmetry are the vertices, face centres, and mid-
edges of the lattice. I will denote these elements as v, f, and e respectively. The
rotational symmetry of each element is shown in Table 1(a).

I use → to indicate a mapping of an element from one level of refinement to
the next and, in particular, k → k′ to indicate a mapping from k-fold rotational
symmetry to k′-fold rotational symmetry. Under this heuristic, allowable sym-
metry mappings between values of k and k′ are, for Q, 2→ 2, 4→ 4, and 2→ 4;
for T and H, 2 → 2, 3 → 3, 6 → 6, 2 → 6, and 3 → 6. Note that 2 → 3 is not
allowed because a 3-centre is not also a 2-centre. The mappings in Table 1(b)
are thus the only ones which are permitted.

Table 1. (a) The rotational symmetries of the different elements. (b) The allowable
mappings under the restrictions of Heuristic 4

(a) (b)

Element Q T H

vertex (v) 4 6 3
face centre (f) 4 3 6
mid-edge (e) 2 2 2

Q

v → v
v → f

f → v
f → f

e → v
e → f
e → e

T

v → v

f → v
f → f

e → v

e → e

H

v → v
v → f

f → f

e → f
e → e
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From this we see that triangular dual (TD) classes are not allowed because
they map vertices to face centres. Alexa’s concentration on the primal classes
(TP , v → v) for triangular subdivision is therefore vindicated as neither dual
nor mixed schemes are useful in the triangular case.

We can also see that any hexagonal scheme which maps face centres to vertices
is not allowed, which excludes some of the hexagonal primal HP classes (those
for which (n−m) mod 3 = 0, see Table 4). Thus, of the hexagonal classes, only
HD classes and a subset of HP classes are considered useful.

For triangular classes, the only cases in which edges do not map to an ap-
propriate element are already excluded by considering those cases where vertices
or face centres do not map to an appropriate element. Therefore it is a moot
point whether we need consider the mapping of the rotational symmetries of
mid-edges as they are never called into play as a criterion for exclusion. For
hexagonal classes, it is possible for an HP class to have v→ v and f→ v but to
have mid-edges mapping to points with no rotational symmetry (see Table 4).
I conjecture that these should also be excluded.

3.3 The Limitations of the Primal/Dual Notation

Details of how the above mappings are calculated can be found in Tables 2–4 and
Appendix A. The fact that the calculations for HD and TP and for HP and TD
are not exact duals of one another shows up a subtle bias in the classification.
The classification is vertex-centric: it explicitly tells us whether a vertex maps to
a vertex or a face centre. Arguably of equal significance is whether a face centre
maps to a vertex or a face centre. Fortunately this information can be derived
directly from the notation. There are four cases:

vv vertex preserving v→ v, f→ v
ff face preserving v→ f, f→ f
vf preserves both v→ v, f→ f
fv preserves neither v→ f, f→ v

The notation, ab, at left above is shorthand for v → a, f → b. This provides a
more explicit representation of the mappings which occur than does the simple
P and D labelling used by Ivrissimtzis et al. [2]. Note that fv is something of a
special case because a subdivision scheme which is of type fv is of type vf if one
considers two steps of subdivision.

Heuristic 4 restricts us to eight useful classes of subdivision scheme. A Q
scheme can be any of vv, ff, vf, or fv; while a T scheme can only be vv or vf; and
an H scheme can only be ff or vf.

In addition to vertices and face centres, the mappings of mid-edges can also be
considered, for completeness. Tables 2–4 show how the mappings can be derived
directly from the notation. We see that there are a limited set of valid mappings.
I use the notation vfe → abc to indicate v → a, f → b, and e → c, extending
the notation above to include edge mappings. Where context is clear I use just
abc to indicate the same thing. Note that TD classes allow the possibility that
an edge can map to a point with no rotational symmetry (indicated by x) and
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Table 2. Calculation of the vfe coding for the quadrilateral QP and QD classes. Details
of the derivation of these formulæ can be found in Appendix A

QP (n, m) ⇒ v → v
(n − m) mod 2 = 0 ⇒ f → v
(n − m) mod 2 = 1 ⇒ f → f

n mod 2 = m mod 2 = 0 ⇒ e → v
n mod 2 = m mod 2 = 1 ⇒ e → f
n mod 2 �= m mod 2 ⇒ e → e

Possible scheme types are: vvv, vvf, and vfe.

QD(n, m) ⇒ v → f
(n − m) mod 2 = 0 ⇒ f → f
(n − m) mod 2 = 1 ⇒ f → v

n mod 2 = m mod 2 = 0 ⇒ e → f
n mod 2 = m mod 2 = 1 ⇒ e → v
n mod 2 �= m mod 2 ⇒ e → e

Possible scheme types are: fff, ffv, and fve.

Table 3. Calculation of the vfe coding for the triangular TP and TD classes. Details
of the derivation of these formulæ can be found in Appendix A

TP (n, m) ⇒ v → v
(n − m) mod 3 = 0 ⇒ f → v
otherwise ⇒ f → f

n mod 2 = m mod 2 = 0 ⇒ e → v
otherwise ⇒ e → e

Possible scheme types are: vvv, vve, vfv, and vfe.

TD(n, m) ⇒ v → f
(n − m) mod 3 = 0 ⇒ f → f

otherwise ⇒ f → f
v

n mod 2 = m mod 2 = 0 ⇒ e → f
otherwise ⇒ e → x

Possible scheme types are: fff, ffx, f f
v f, and f f

v x.

that half of the face centres can map to face centres while the other half map
to vertices (indicated by f

v ). These possibilities are a consequence of allowing
the v→ f mapping which reduces a 6-centre to a 3-centre, and provides further
justification for Heuristic 4. A similar observation about edges mapping to points
with no rotational symmetry can be made about some of the HP classes.

Fig. 5 illustrates the low arity classes. It shows at least one class of each of
the mapping types for QP , QD and TP .
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Table 4. Calculation of the vfe coding for the hexagonal HP and HD classes. Details
of the derivation of these formulæ can be found in Appendix A

HP (n, m) ⇒ v → v
v� → v� ⇒ c = 1
v� → v� ⇒ c = 2

(n − m) mod 3 = 0 ⇒ f → v
(n − m) mod 3 = 3 − c ⇒ f → f
(n − m) mod 3 = c ⇒ HM, not HP

(n − m) mod 3 = 0 and
n mod 2 = m mod 2 = 0 ⇒ e → v
otherwise ⇒ e → x

(n − m) mod 3 = 3 − c and
n mod 2 = m mod 2 = 0 ⇒ e → f
otherwise ⇒ e → e

Possible scheme types are: vvv, vvx, vff, and vfe.

HD(n, m) ⇒ v → f

(n − m) mod 3 = 0 ⇒ f → f
otherwise ⇒ HM, not HD

n mod 2 = m mod 2 = 0 ⇒ e → f
otherwise ⇒ e → e

Possible scheme types are: fff and ffe.

3.4 Heuristics Based on Observation of Current Practice

While the previous two heuristics are based on a desire to have a single determin-
istic limit surface, the following heuristics are much less clear-cut and I therefore
address their limitations as well as their merits in the discussion.

Heuristic 5. Allow only schemes which align the mesh at one level of refinement
with the mesh at some higher level of refinement.

This heuristic was explored by Alexa [1] for the TP classes. It says that a scheme
needs to produce a mesh which is in the same rotational orientation as the base
mesh after a finite number of steps. For all three types of base mesh, this heuristic
permits only (n, 0) and (n, n) classes. Alexa [1] proves this for T classes, so it is
true for H classes by geometric duality. It is also true for Q classes because it is
true by inspection for (n, 0) and, for (n,m), m > 0 it requires:

tan
2π

p
∈ Q, p ∈ ZZ+, 0 <

2π

p
≤ π

4

whose only solution [29] is p = 8 and therefore m = n. In Han’s classification of
TP and QP schemes [26], his symmetry conditions force this heuristic to be true
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QP(2,0)

vvv

QP(1,1)

vvf

QP(2,1)

vfe

QP(2,2)

vvv

QP(3,0)

vfe

QD(2,0)

fff

QD(1,1)

ffv

QD(2,1)

fve

QD(2,2)

fff

QD(3,0)

fve

TP(2,0)

vfv

TP(1,1)

vve

TP(2,1)

vfe

TP(2,2)

vvv

TP(3,0)

vve

HP(2,0)

vff

HD(1,1)

ffe

HP(2,1)

vfe

HD(2,2)

fff

HD(3,0)

ffe

Fig. 5. Illustrations of the low arity QP , QD, TP and H classes. Open circles are
source vertices; black dots are subdivided vertices. The solid lines are the source mesh;
the dashed lines are the subdivided mesh. The (2, 1) schemes have been included for
completeness, although excluded by Heuristic 5

and his Theorem 2 proves the equivalent of this restriction to (n, 0) and (n, n)
classes.

This heuristic seems reasonable because the base mesh is often constructed
with important linear features of the object aligned with the mesh, so rotating
away from this alignment is a bad thing. Of course, the (n, n) classes also rotate
away from the desired alignment, but they do it symmetrically and, after two
subdivision steps, they are realigned.

However, it is arguable that this heuristic is not strictly necessary. In par-
ticular, it is always possible to get the subdivision meshes to realign after every
two subdivision steps by performing the rotation one way on even numbered
steps and the opposite way on odd numbered steps (an example can be seen
in Fig. 4). One way to check the validity of the heuristic would be to perform
an investigation (similar to that undertaken for TD(1, 1) [28]) on either of the
lowest arity classes which are excluded by this heuristic: QP (2, 1) or QD(2, 1).
QP (2, 1) is specifically mentioned by Sloan [3] as useful in the context of numer-
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ical integration and Ivrissimtzis et al. [30] have recently undertaken an initial
investigation of QP (2, 1) schemes. While they do produce a valid subdivision
scheme, it is unclear whether it is of practical use.

Heuristic 6. Triangular and quadrilateral schemes are generally useful but
hexagonal schemes are more limited in their applications.

As mentioned above, it is frequently useful to have important linear features in
the model, such as edges, run along an edge in the base mesh in order to preserve
the linear feature from one level of subdivision to the next. Hexagonal meshes
do not have any straight edges which will run between multiple polygons. This
would seem to limit the applicability of hexagonal schemes because they are not
useful for objects in which such linear features need to be preserved. However,
Claes et al. [14] claim that this is one of the advantages of hexagonal schemes:
that they can be used situations where one does not want linear features to
be preserved. Furthermore, hexagonal dual schemes are useful as the dual of
triangular primal schemes [21].

Heuristic 7. Low arity is preferable to high arity.

Low arity has one key advantage over high arity: it provides a smaller increase in
the number of vertices, which has the desirable effect of allowing for many levels
of resolution close to one another. This is one of Kobbelt’s [13] justifications for
the usefulness of the

√
3 scheme.

Low arity is therefore important. The question then arises, what is the max-
imum arity that is worth considering. There seems to have been no serious
investigation of any class with arity higher than three. For the purposes of this
paper, I consider classes of arity less than four. Four is a somewhat arbitrary
cut-off point and I make only one, weak, claim for it to be the cut-off, rather
than any other value, which is that any arity two (binary) scheme also describes
an arity four scheme by simply taking two subdivision steps of the arity two
scheme. While an arity four scheme offers greater freedom than that offered by
an arity two scheme in terms of choice of coefficients, it is unclear that there
would be significant advantage in providing this greater freedom as it comes at
the cost of reducing the number of levels of resolution available to the users.

Between arity three and arity four lie the T and H classes of arity (2, 2)
(≡ √12) and the Q classes of arity (3, 1) (≡ √10) and (3, 2) (≡ √13). The latter
two classes would be excluded by Heuristic 5 but TP (2, 2) and HD(2, 2) would
not be excluded by that heuristic and may be interesting as they are the lowest
arity classes with mapping types vvv (triangular) and fff (hexagonal).

It is arguable that we should consider nothing higher than arity three; this
would exclude the T and H classes of arity (2, 2) but not the Q(2, 2) classes
(≡ √8). As intimated the start of Sect. 3, it has been suggested that nothing
higher than arity two is worth considering, which would exclude the ternary
classes (arity (3, 0)) as well the Q(2, 2) classes. Recent work [17, 18, 25] appears
to contradict this extreme view and ternary classes certainly allow a range of
different behaviour to that permitted by binary classes.
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In contradiction of this estimate that arity four is some sort of rough cut-
off point, consider the work of Maillot and Stam [31], who provide subdivision
of arbitrary integer arity. Their work, however, simply does a single step of
subdivision, of appropriate arity, to get from the base mesh to the final mesh,
which is not quite in the spirit of subdivision.

Heuristic 8. Interpolating schemes should be primal.

All classes can accommodate approximating schemes. Any class with the v→ v
mapping can also accommodate interpolating schemes. Classes with the v →
f mapping are also able to produce interpolating schemes but the derivations
required are complicated and it is not clear that the advantages outweigh the
complications.

4 Discussion

Taking all these heuristics into account, the arites which will most reward fur-
ther investigation are (1, 1), (2, 0), (3, 0) and (2, 2), producing twelve subdivi-
sion classes (eight Q, four T ) or eleven if we discount the TP (2, 2) class with the
rather high arity

√
12. Including the equivalent H classes would add three or four

classes to be considered (depending on whether or not one includes HD(2, 2)).
Table 5 lists the low arity classes classes, along with the name of the most
well-known published schemes in each class. I have included the (2, 1) classes
(excluded by Heuristic 5) for completeness because it may be that something
useful could be done with them. Fig. 5 shows the layout of a single refinement
step for each. Table 5 can be considered a much extended version of Zorin and
Schröder’s [20] Table 1. It is worth noting that, in addition to the schemes
named in Table 5, Zorin and Schröder [20] have developed a whole family of
QP (2, 0) and QD(2, 0) schemes and Oswald and Schröder [21] a whole family of
TP (1, 1) and HD(1, 1) schemes, all based on up-sampling followed by repeated
averaging.

The classification allows description of a wide range of possible subdivision
schemes ranging from those which are currently used through those which may
be useful to those which are almost certainly unusable. The heuristics are a
mechanism for paring away the unusable classes in order to clearly identify the
useful ones. While the classification system is a clean mathematical construct,
the heuristics are less well-defined. The first four heuristics have strong justi-
fications, but the latter four are open to contradiction as demonstrated in the
discussion following each heuristic. Note that Ivrissimtzis et al. [2] implicitely
assume the first two heuristics, while Han [26] assumes the first six. This paper
indicates that, in contrast to both of those assumptions, the first four are rea-
sonably straightforward to justify. One useful next step would be to ascertain
whether there are formal mathematical proofs which either support or shatter
each heuristic.
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Table 5. The low arity classes which may be useful. They are listed in order of in-
creasing arity within the four classifications QP , QD, TP , H. I have included some
which are excluded by later heuristics and the right hand column shows which heuris-
tics would cause them to be excluded. Each class is subdivided into approximating
and interpolating sub-classes. Interpolating versions of dual schemes are difficult to
construct (Heuristic 8) and have therefore been omitted. Sub-classes which have been
investigated in the literature are given their common names and an appropriate cita-
tion. Those which have not, to my knowledge, been investigated are given a descriptive
name in square brackets

Example Schemes
Class vfe → Approximating Interpolating Excluded by

QP (1, 1) vvf Velho [11] P&S [10] interpolating
√

2 [22, 23]
QP (2, 0) vvv Catmull-Clark [6] Kobbelt [16]

QP (2, 1) vfe
√

5 [30] [interpolating
√

5] Heuristic 5

QP (2, 2) vvv [
√

8] [interpolating
√

8]
QP (3, 0) vfe [ternary] [interpolating ternary]

QD(1, 1) ffv simplest [9] —
QD(2, 0) fff Doo-Sabin [7] —

QD(2, 1) fve [dual
√

5] — Heuristic 5

QD(2, 2) fff [dual
√

8] —
QD(3, 0) fve [dual ternary] —

TP (1, 1) vve
√

3 [13] interpolatory
√

3 [24]
TP (2, 0) vfv Loop [8] butterfly [15]

TP (2, 1) vfe [
√

7] [interpolating
√

7] Heuristic 5
TP (3, 0) vve Loop ternary [17] interpolating ternary [18]

TP (2, 2) vvv [
√

12] [interpolating
√

12] Heuristic 7(?)

HD(1, 1) ffe hexagon-by-three [14] — Heuristic 6
HP (2, 0) vff hex binary [32](?) [interpolating hex binary] Heuristic 6

HP (2, 1) vfe [hex
√

7] [interpolating hex
√

7] Heuristics 5 and 6
HD(3, 0) ffe [hex ternary] — Heuristic 6

HD(2, 2) fff [hex dual
√

12] — Heuristics 6 and 7(?)

In addition there are open questions pertaining to classes which are identified
as useful by the heuristics but which have not yet been investigated:

– Is there any advantage to be gained from using a quadrilateral ternary
(Q(3, 0)) scheme? (c.f. Hassan’s [25] univariate ternary scheme and the tri-
angular ternary schemes investigated by Loop [17] and Dodgson et al. [18]).

– Is there any advantage in developing a TP (2, 2) scheme? TP (2, 2) is the
lowest arity triangular class where all three element types map to ver-
tices (i.e. it is of mapping type vvv). By contrast, the simplest quadrilat-
eral class with this mapping is the thoroughly investigated QP (2, 0) class.
However, even the simplest, useful TP (2, 2) scheme would require a ver-
tex to have influence outside its 1-ring, making it difficult to extend to
extraordinary cases, boundaries, and creases, so it may have little, if any,
advantage.
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– Are there useful interpolating QP (1, 1) and TP (3, 0) schemes? While Ivris-
simtzis et al. [22, 23] have calculated appropriate mask coefficients for the
QP (1, 1) class and Dodgson et al. [18] have undertaken initial work on
TP (3, 0), it remains to perform detailed analysis and to modify the schemes
to handle the extraordinary cases, boundaries, and creases.

It is possible to add further heuristics to the list relating to details further
down the classification hierarchy (Sect. 1). As an example, the next heuristic
which I would propose is the rather obvious:

Heuristic 9. A small footprint is preferable.

A smaller footprint makes for more efficient calculation and is easier to mod-
ify to handle the extraordinary cases. A larger footprint gives more freedom
in choice of coefficients. Loop’s motivation for investigating a ternary version
(TP (3, 0)) [17] of his binary scheme (TP (2, 0)) [8] was that the ternary ver-
sion gave more degrees of freedom. As a second example, the higher degree
QP (2, 0) and QD(2, 0) schemes generated by Zorin and Schröder [20] have large
footprints and clearly require more calculation than the lower degree schemes
which seems to be a contra-indication. However, the mechanism of repeated
averaging which they use provides a straightforward way of handling the ex-
traordinary cases at the expense of losing the extra freedoms gained by having
a larger footprint and at the expense of severe distortion around extraordinary
points.

5 Conclusion

By applying heuristics to the classification, I conclude that the most useful lin-
ear, stationary subdivision classes have been investigated and schemes devel-
oped for them. There is some scope for further work, principally in looking at
ternary subdivision [17, 18]. However the future development of new subdivision
schemes seem to lie elsewhere, for example in the development of non-linear or
non-stationary versions of schemes for classes which have already been inves-
tigated [33] or in combining schemes from more than one class into a single
coherent mechanism [10, 34].
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A Details of the Formulæ in Tables 2–4

A.1 Quadrilateral Mesh

In the coordinate system of the subdivided mesh, vertices are at (x, y), x, y ∈ ZZ,
face centres at

(
x + 1

2 , y + 1
2

)
, x, y ∈ ZZ, and mid-edges at

(
x + 1

2 , y
)
,
(
x, y + 1

2

)
,

x, y ∈ ZZ.
For the primal classes, QP (n,m), the origin of the source grid is a source

vertex at (0, 0), with an adjacent source vertex at (n,m), n,m ∈ ZZ, 0 < n, 0 ≤
m ≤ n.

A source quadrilateral adjacent to the origin has vertices at (0, 0), (n,m),
(−m,n), and (n−m,n + m). Its face centre is at the arithmetic mean of these
four points:

(
n−m

2 , n+m
2

)
. This coincides with a vertex of the subdivided mesh if

n−m mod 2 = 0. If the alternative, n−m mod 2 = 1, is true then a face centre
maps to a face centre.
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The source edge from (0, 0) to (n,m) has its midpoint at
(

n
2 , m

2

)
. Therefore,

if n mod 2 = m mod 2 = 0 we have e → v, if n mod 2 = m mod 2 = 1, we have
e→ f, and otherwise we have e→ e.

For the dual classes, QD(n,m), everything shifts by
(

1
2 , 1

2

)
. The net result is

that we can simply exchange the rôles of face centres and vertices in subdivided
mesh in the QP (n,m) case. Thus, n−m mod 2 = 0⇒ f→ f and n−m mod 2 =
1 ⇒ f → v for the QD case and, likewise, n mod 2 = m mod 2 = 0 ⇒ e → f;
n mod 2 = m mod 2 = 1⇒ e→ v; otherwise e→ e.

A.2 Triangular Mesh

In the coordinate system of the subdivided mesh, vertices are at (x, y), x, y ∈
ZZ, face centres at

(
x + 1

3 , y + 1
3

)
,
(
x + 2

3 , y + 2
3

)
, x, y ∈ ZZ, and mid-edges

at
(
x + 1

2 , y
)
,
(
x, y + 1

2

)
,
(
x + 1

2 , y + 1
2

)
, x, y ∈ ZZ. Note that there are two

types of face centre: the centres of up-pointing triangles (
) and the centres of
down-pointing triangles (�). The ramifications of this are discussed in detail by
Ivrissimtzis et al. [2]. We will annotate the f notation with a subscript, f� and
f�, where necessary.

For a TP (n,m) class, without loss of generality, we will take the origin of
the source grid to be a source vertex at (0, 0), with an adjacent source vertex at
(n,m), n,m ∈ ZZ, 0 < n, 0 ≤ m ≤ n, and with an up-pointing triangle to the
left of the line as one moves from (0, 0) to (n,m).

The up-pointing source triangle to the left of this line has source vertices
at (0, 0), (n,m) and (−m,n + m). The face centre of this source triangle is at
the arithmetic mean of these three points:

(
n−m

3 , n+2m
3

)
. Thus we have three

possible mappings:

n + 2m mod 3 = 0⇒ f� → v f� → v
n + 2m mod 3 = 1⇒ f� → f� f� → f�
n + 2m mod 3 = 2⇒ f� → f� f� → f�

It is not clear that there is a need to distinguish between up- and down-pointing
triangles and so, in the interests of clarity, Table 3 does not do so. The reader
will note, however, that the most widely used triangular schemes (the TP (2, 0)
schemes Loop [8] and butterfly [15]) map up-pointing triangles to down-pointing
triangles and vice-versa.

The source edge from (0, 0) to (n,m) has its midpoint at
(

n
2 , m

2

)
. Therefore,

if n mod 2 = m mod 2 = 0 we have e→ v. In all other cases, e→ e.
For the TD(n,m) classes, the origin of the source grid is a source vertex at

the centre of a face. Its coordinates will thus be:
(

c
3 , c

3

)
c ∈ {1, 2} where c = 1

if the face is an up-pointing triangle and c = 2 if the face is a down-pointing
triangle. Ivrissimtzis et al. [2] show that n,m ∈ ZZ in the TD case.

The up-pointing source triangle to the left of the line from the origin to the
adjacent source vertex,

(
n + c

3 ,m + c
3

)
, has vertices at

(
c
3 , c

3

)
,
(
n + c

3 ,m + c
3

)
and

(−m + c
3 , n + m + c

3

)
. The face centre of this source triangle is at the arith-

metic mean of these three points:
(

n−m
3 + c

3 , n+2m
3 + c

3

)
. Thus we have three

possible mappings for each of the values of c. For c = 1:
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n + 2m mod 3 = 0⇒ f� → f� f� → f�
n + 2m mod 3 = 1⇒ f� → f� f� → v
n + 2m mod 3 = 2⇒ f� → v f� → f�

For c = 2:
n + 2m mod 3 = 0⇒ f� → f� f� → f�
n + 2m mod 3 = 1⇒ f� → v f� → f�
n + 2m mod 3 = 2⇒ f� → f� f� → v

In the TD cases, unless n + 2m mod 3 = 0, then half of the face centres map to
face centres and half map to vertices, which is forbidden by Heuristic 3. However,
the situation is rather messy as Heuristic 3 excludes only some of the TD classes,
providing further evidence that there are deeper things going on than revealed
by the simple classification into ‘primal’ and ‘dual’.

The edge from
(

c
3 , c

3

)
to
(
n + c

3 ,m + c
3

)
has its midpoint at

(
n
2 + c

3 , m
2 + c

3

)
.

Therefore, if n mod 2 = m mod 2 = 0 we have e → f. In all other cases, e → x,
i.e. an edge maps either to a face centre or it maps to no element at all.

Only if both n + 2m mod 3 = 0 and n mod 2 = m mod 2 = 0 do we get a
sensible mapping. Combining these two gives the condition n + 2m mod 6 = 0
which is mentioned in the discussion of Heuristic 3.

A.3 Hexagonal Mesh

The hexagonal case is somewhat more involved than the triangular case because,
in the hexagonal case, we can distinguish two different types of vertex. This
means that we must check that both types of vertex map to the same new
element type (face or vertex) in order for the class to be either HD or HP .
Otherwise, the class is HM .

In the coordinate system of the subdivided mesh, face centres are at (x, y),
x, y ∈ ZZ, vertices at

(
x + 1

3 , y + 1
3

)
,
(
x + 2

3 , y + 2
3

)
, x, y ∈ ZZ, and mid-

edges at
(
x + 1

2 , y
)
,
(
x, y + 1

2

)
,
(
x + 1

2 , y + 1
2

)
, x, y ∈ ZZ. We need to annotate

the v notation in order to distinguish the two types of vertex. Where neces-
sary, vertices at

(
x + 1

3 , y + 1
3

)
, x, y ∈ ZZ will be denoted v� and those at(

x + 2
3 , y + 2

3

)
, x, y ∈ ZZ, v�. v� is a Y-shaped vertex while v� is an inverted

Y. The orientation of the triangle is the dual of the configuration of the vertex.
In the hexagonal case, the (n,m) notation does not refer to the distance

between two adjacent vertices but between two vertices of the same type or,
equivalently, between two face centres. This ensures that the hexagonal cases
with classification (n,m) are duals of the triangular cases with classification
(n,m).

For an HD(n,m) class, without loss of generality, we will take the origin of
the source grid to be a source vertex at (0, 0), with the next source vertex of the
same type at (n,m), n,m ∈ ZZ, 0 < n, 0 ≤ m ≤ n, and with the vertex at the
origin being of type v�.

The hexagon has source vertices of type v� at (0, 0), (n,m), and (−m,n+m),
with intervening vertices of type v� at

(
2n+m

3 , −n+m
3

)
,
(

2n−2m
3 , 2n+4m

3

)
, and(−n−2m

3 , 2n+m
3

)
. The face centre of this source hexagon is at the arithmetic mean
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of these six points:
(

n−m
3 , n+2m

3

)
. From these, we can determine that v� → f

always (by definition) and that:

n + 2m mod 3 = 0⇒ v� → f f→ f
n + 2m mod 3 = 1⇒ v� → v� f→ v�
n + 2m mod 3 = 2⇒ v� → v� f→ v�

Thus, if n+2m mod 3 = 0, we do not have an HD class because vertices of type
v� do not map to face centres, and therefore we have an HM class. Thus, for
all HD classes, n + 2m mod 3 = 0, by definition, and f→ f.

Analysis of the edges show that there are only two possible edge mappings.
If n mod 2 = m mod 2 = 0 we have e→ f. In all other cases, e→ e.

For the HP (n,m) classes let us take, as the origin of the source grid, a
source vertex of type v� at

(
c
3 , c

3

)
c ∈ {1, 2} where the value of c determines

the type of destination vertex (v� or v�). The next source vertex of type v� is
at
(
n + c

3 ,m + c
3

)
.

The hexagon has source vertices of type v� at
(

c
3 , c

3

)
,
(
n + c

3 ,m + c
3

)
, and(−m+ c

3 , n + m+ c
3

)
, with intervening vertices of type v� at

(
2n+m+c

3 ,−n+m+c
3

)
,(

2n−2m+c
3 , 2n+4m+c

3

)
, and

(−n−2m+c
3 , 2n+m+c

3

)
. The face centre of this source

hexagon is at the arithmetic mean of these six points:
(

n−m+c
3 , n+2m+c

3

)
. By

definition, if c = 1 then v� → v� and if c = 2 then v� → v�. We need to
consider the mappings for v� and f for each value of c.

For c = 1 :
n + 2m mod 3 = 0⇒ v� → v� f→ v�
n + 2m mod 3 = 1⇒ v� → f f→ v�
n + 2m mod 3 = 2⇒ v� → v� f→ f

For c = 2 :
n + 2m mod 3 = 0⇒ v� → v� f→ v�
n + 2m mod 3 = 1⇒ v� → v� f→ f
n + 2m mod 3 = 2⇒ v� → f f→ v�

Thus, we have HM classes if n + 2m mod 3 = c because, in these cases, v� → v
but v� → f. For HP schemes we can summarise our results as:

n + 2m mod 3 = 0 ⇒ v→ v f→ v
n + 2m mod 3 = 3− c⇒ v→ v f→ f
n + 2m mod 3 = c ⇒ HM not HP

It now remains to determine the edge mappings. There are three types of
edge to consider, which can be characterised by one example of each. These are
the first three edges round the source hexagon starting at the origin vertex and
they are at:(

2n+m
6 + c

3 , −n+m
6 + c

3

)
,
(

5n+m
6 + c

3 , −n+4m
6 + c

3

)
,
(

5n−2m
6 + c

3 , 2n+7m
6 + c

3

)
.

We thus need to know the values of n and m which place these coordinates
at destinations vertices, face centres or edges, which means that we need to
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consider the values of 2n + m mod 6, 5n + m mod 6 and 5n + 4m mod 6. Some
basic analysis of these shows that the following results hold:

(n−m) mod 3 = 0 and
n mod 2 = m mod 2 = 0 ⇒ e→ v
otherwise ⇒ e→ x

(n−m) mod 3 = 3− c and
n mod 2 = m mod 2 = 0 ⇒ e→ f
otherwise ⇒ e→ e
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Abstract. Freeform rational parametric curves and surfaces have been
playing a major role in computer aided design for several decades. The
ability to analyze local (differential) properties of parametric curves is
well established and extensively exploited. In this work, we explore a
different lifting approach to global analysis of freeform geometry, mostly
curves, in IR2 and IR3. In this lifting scheme, we promote the problem
into a higher dimension, where we find that in the higher dimension, the
solution is simplified.

1 Introduction

The differential analysis of freeform planar and 3-space parametric curves is a
fundamental tool that is heavily used in computer aided geometric design ap-
plications. Numerous examples exist. Being able to handle and define curvature
properties eases the understanding of singularities in offset curves, curves that
are crucial to many design and manufacturing applications. Having the abil-
ity to locally define a wide variety of orientation frames along curves, from the
Frenet [6] frame to orientation minimizing frames [4, 17] using local differential
geometry, constitutes an immense aid in the construction of sweep surfaces.

The exploited differential analysis is indeed mostly local. Analysis of the
global properties of curves (and surfaces) in IR2 and IR3 is far less common in
geometric design. Clearly, global integrable properties of freeform geometry are
much more difficult to detect. Some examples of work that has tried to derive
global properties are found in [14] where moments of freeform geometry are
developed. In [9, 15, 18], the area (volume) enclosed by a curve (surface) is made
fixed while interactive (multi-resolution) direct manipulation is allowed. In the
present work, we consider a different approach to global analysis of freeform
geometry. By lifting the problem into a higher dimensional space, the hope is
that the lifted geometry will, in fact, be simpler to process.

We intend to explore several problems about which very little is known. Yet
and as an example, we take as our starting point the simple and already solved
problem of finding all the inflection points of a freeform regular planar curve,
C(u). This problem is closely related to the issue at hand and could easily be
reduced to finding the zeros of the univariate of C ′′(u)×C ′(u), thereby identify-
ing all the locations with zero curvature in the curve. Nonetheless, in Section 2,
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we will use this example to show a new constructor – an orthogonality map –
that lifts the univariate curve C(u) into a bivariate surface. With this map, the
identification of all the inflection points is simple. Further, other (global) prop-
erties of planar curves such as visibility properties and their winding numbers
will also be revealed with the aid of the orthogonality map.

Visibility and moldability are two other examples where global analysis must
play a role. Visibility queries typically ask questions regarding lines-of-sight be-
tween points and objects whereas the moldability question looks at partitioning
the given geometry into parts of a mold that can be assembled and disassembled
without the parts colliding. Interestingly enough, these two problems are closely
related. Consider the planar n-moldability problem of C(u). That is, the compu-
tation of the decomposition of C(u) into an n-piece mold, if possible, minimizing
n. While some work on piecewise linear representations (i.e., polygons) can be
found, virtually nothing is known about this problem and its solutions in the
context of freeform geometry. In [1], the two-piece mold separability problem for
polygonal surfaces in IR3 is considered, with a heuristic implemented solution.
View and inspection planning is another problem that was investigated in this
piecewise linear context [19].

In the freeform domain, little information exists about visibility and mold-
ability. A previous paper by Elber [12] considered the problem of determining
the existence of a valid two-piece mold for a designed solid model whose bound-
ary is represented as a NURBS surface with C3 continuity, and finding such a
mold if it exists. For more than two pieces, nothing is known. Moreover, related
visibility problems such as the art gallery query, a well studied problem in the
computational geometry community, again in the discrete polygonal domain [3],
is another open question. In Section 3, we will address these questions using a
different dimensionality lifting scheme.

Another problem we will be exploring in Section 4 is, given a simple 3-space
curve, C(u), find all directions V , if any, in IR3 from which C(u)’s orthographic
projection onto the plane orthogonal to V is simple. Finally, in Section 5, we
conclude.

2 The Orthogonality Map

Consider a C1 regular planar parametric curve C(u):

Definition 1. The Orthogonality Function OF (u, v) of a C1 regular planar
parametric curve C(u) : D ∈ IR→ IR2 is defined as

OF (u, v) = 〈C ′(u),C ′(v)〉 : [D ×D]→ IR.

and

Definition 2. The Orthogonality Map OM of a C1 regular planar paramet-
ric curve C(u), denoted OM[C], is the zero set of the orthogonality function,
OF (u, v) = 0.
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The orthogonality function lifts curve C(u) into an explicit surface whose
zero set is defined to be the curve’s orthogonality map. Let us explore a few
properties of the orthogonality map.

Lemma 1. OF (u, v) and OM[C] are both symmetric along the u = v diagonal
for a closed C1 curve C.

Proof. Trivial by construction, OM(u, v) = OM(v, u).

The fact that the OM map is symmetric will repeat itself in the other lifting
schemes we will examine. Since OF (u, v) is a continuous function, all curves in
OM[C] are either closed loops or curves that start and end on the boundary of
[D ×D].

Recall that we sought, as a simple exemplary motivation, to derive all the in-
flection points of the planar curve C(u) using OM. The following result explains
how this could be accomplished:

Lemma 2. The u-extreme (v-extreme) locations in OM[C] correspond to v-
inflection (u-inflection) points in C.

Proof. The extreme locations of the subset of IR2 of OF (u, v) = 0 (the OM set)
are classified by the additional constraints of ∂OF (u,v)

∂v = 0
(

∂OF (u,v)
∂u = 0

)
[16].

These are the locations where the OM curve has u-extreme (v-extreme) loca-
tions.

Differentiating OM(u, v) with respect to u (respectively v),

∂OF (u, v)
∂u

=
∂ 〈C ′(u),C ′(v)〉

∂u
= 〈C ′′(u),C ′(v)〉 = C ′′(u)× C ′(u),

due to the fact that C ′(v) is orthogonal to C ′(u), satisfying OF (u, v) = 0 (simi-
larly for the case of v).

Nevertheless, the condition C ′′(u)× C ′(u) = 0 is exactly related to the zero
curvature locations, hence detecting the inflection points.

Figure 1 presents an example of a planar curve (Figure 1 (a)) and its orthog-
onality map (Figure 1 (b)). In Figure 1 (c), the orthogonality function is shown
in IR3 along with its zero set, the orthogonality map. Two inflection points are
presented in Figure 1 (a) and these points are clearly reflected as extreme loca-
tions in the orthogonality map shown in Figure 1 (b). Note the two pairs of lines
(one horizontal pair and one vertical pair) in Figure 1 (b) at the inflection points’
parameter values go through all the extreme locations, capturing the loops in
the map as well.

Definition 3. Consider a sub-region of C(v), v1 < v < v2. C(v), v1 < v < v2

is considered locally visible from some view direction V , if no point C(v0), v1 <
v0 < v2 obscures another point in that domain, when viewed from V .

Put differently, the local visibility only considers the possibility of a small
region of C(u) to obscure itself, and ignores the possibility that other parts of
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(a)

C(u)

(b)
u

v
OM [C]

(c)

u

v

Fig. 1. An orthogonality map OM [C] (b) of a planar curve C(u) (a). (c) presents the

orthogonality function (in gray) along with its zero set (in black), the orthogonality

map

C(u), outside the local domain, obscure these points. Consider now the view-
ing direction of V = N(u0), following the normal of C at u0. Inspect the point
(u0, u0) on the diagonal of OM[C] and shoot two opposing rays vertically, in
the −v and +v directions, from (u0, u0) (see the vertical light-gray edge in Fig-
ure 2 (c)). Let the points of impact of these vertical rays with OM[C] be (u0, v1)
and (u0, v2) and denote these points as the vertically closest points to (u0, u0).

Lemma 3. Let (u0, v1) and (u0, v2) be the two vertically closest points on OM[C]
to (u0, u0), for some u0. Then, the region of C from C(v1) to C(v2) is locally
visible from direction V = N(u0).

Proof. By the orthogonality map, every point C(v), v1 < v < v2 possesses a
tangent vector that is never orthogonal to C ′(u0) and hence is never parallel to
V . Consequently, starting from C(u0), when we move along the curve toward
C(v1) (or toward C(v2)), we never locally occlude previous curve points in the
domain. In other words, none of the curve points C(v), v1 < v < v2, could
possibly occlude each other and, therefore, they are all locally visible.

Figure 2 is an example of this phenomenon. In Figure 2 (a), a planar curve
is presented with the point C(u0) for which the local visibility is sought when
viewed from N(u0) (see Figure 2 (d)). With the aid of the orthogonality map
in Figure 2 (b), the local visibility of C(u0) could be determined, as shown in
Figure 2 (c) in light-gray.

One can build the lower, L(u), and upper, U(u), envelope of these local
visibilities for all u locations in the domain of C(u). These envelopes show, for
all u, the maximal extent along the curve that is locally visible from N(u) – the
normal direction at C(u). These lower and upper envelopes of the local visibility,
as was determined for all u in the domain, are plotted in Figure 2 (c), in dark-
gray. If the geometry is closed and C1 continuous, the map is periodic in both
the u and v axes and hence the envelopes penetrate above (below) the square
domain with the semantics that these portions are warped to the bottom (top)
of the domain.
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(a)

C(u0)

(b)
u

v

(c)
u

(u0, u0)
���

U(u)

L(u)

(u0, v1)�

(u0, v2)
��

(d)N(u0)

Fig. 2. The orthogonality map (b) of planar curve (a) is used to compute the local

visibility (light-gray in (c) & (d)) from direction N(u0). Over all u, the lower, L(u),

and upper, U(u), visibility envelopes are constructed and shown in (c) in dark-gray

L(u) and U(u) could aid in selecting a minimal set of views from which
the entire curve is (locally) accessible or visible. More on this will be found in
Section 3.

The orthogonality map comprises two types of entities. The first are islands
that are the result of having two inflection points in the curve with tangents
that are (almost) orthogonal. In Figure 1 (b), we have one such island (note we
consider only one half of this symmetric function). This island corresponds to
the two inflection locations marked on Figure 1 (a).

The second type of entity is composed of components that start at the bot-
tom boundary and end at the right boundary (considering only the portion of
the orthogonality map below the diagonal). Note that both islands could cross
boundaries if the curve is periodic, and components that start at the bottom
boundary and end at the right boundary could also traverse back and forth
across these boundaries. Now, consider this periodic map, for periodic curves, as
a repeated square that tiles IR2, while denoting the original map as the primary
tile (see Figure 3).

LetW denote the winding number of curve C(u), i.e., the number of times the
curve turns in the plane. W could be computed by integrating the curvature of
the curve, yet we postulate that this global number could also be extracted from
the orthogonality map. Count the number of paths from the bottom boundary
through the right boundary. Then, we have the following result:

Observation 1. The number of infinite paths from the bottom boundary to the
right boundary of the orthogonality map equals 2W.

To justify this observation, consider C(u) to be a closed, simple, continuous
convex curve (see Figure 4 (a) and consider an infinite line in the direction of
D = C ′(u0) approaching from infinity in the N(u0) direction and toward C(u),
N(u0) being the normal of C at u. Stop the approach at the first point of contact



Global Curve Analysis via a Dimensionality Lifting Scheme 189

(a)
(b)

(c) (d)

(e) (f)

Fig. 3. The winding number of a planar curve is equal to half the number of infinite

paths going through the bottom boundary to the right boundary of the primary tile

(in gray) of the orthogonality map

with C(u), and repeat this line-approaching process from the −N(u0) direction.
The distance between these two infinite parallel lines, which are now in contact
with C(u) on both its sides, determines the diameter of the convex curve from
that direction (which cannot be zero). Hence, a simple closed convex curve has
a pair of solution points on the orthogonality map, for every location on the
curve. C(u) is C1 continuous and due to this continuity these pairs will com-
bine and form two continuous paths on the orthogonality map from the bottom
boundary to the right boundary. For a convex curve, these paths will also be
monotone.

The convex hull curve of every planar simple curve will, therefore, have two
paths. The convex hull of a planar simple curve C(u) consists of convex regions
of C(u) and line segments connecting these regions (see Figure 4 (b)). Nonethe-
less, the line segments are bitangent lines to C(u) that have the same tangent
direction at the two end points of each line segment, denoted C(us) and C(ue). A
path in the orthogonal map that matches another point C(um) as an orthogonal
point to C(us) must be connected to C(ue) as well, because the curve segment
C(u), u ∈ [us, ue] is C1. In other words, the two paths will still form, for a simple
curve, though they will no longer be monotone.
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(a)

D

C(u)
C ′(u1)

C ′(u0)

N(u1)

N(u0)

(b)

C(us)

C(ue)

C(us)
C(ue)

Fig. 4. Given some direction D = C′(u0) in (a), two inifinite lines in direction D

approach convex planar curve C(u) from ±N(u0) = ∓N(u1) and touch it in two

locations u0 and u1. In (b), a general curve is complemented with bitangents, making

it convex

Fig. 5. A decomposition of a curve with four loops (a) into four simple nested curves

(b). See also Figure 3 (f)

Now consider m nested, closed, simple C1 continuous convex curves. Clearly,
every such simple curve contributes two paths or 2m paths in the orthogonality
map in all. Nevertheless, every closed curve could be broken into several closed
and simple curves, while preserving the orientation of the loops to follow that of
the original curve. For example, Figure 5 shows a decomposition of the curve in
Figure 3 (f) into four simple and nested curves.
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The two curves in Figures 3 (a) and (b) are simple and the primary tile
indeed has two paths from the bottom boundary to the right boundary. The self
intersecting shape in Figure 3 (c) is decomposed into three simple loops, but one
of them is in the opposite orientation to the other two and hence the two paths
from the bottom boundary to the right boundary of the primary tile prescribe
the correct winding number. The self intersecting ’8’ shape in Figure 3 (d) is
decomposed into two simple curves but in an opposite orientation, which leaves
the winding number of this curve at zero. Finally, the two shapes in Figures 3 (e)
and (f) are decomposed into three and four simple nested curves, all with the
same orientation and as expected, six and eight paths are recognized in their
primary tiles, respectively.

Given an orthogonality map, one needs to trace all the closed loops in the
map and purge them away so as to find and count only the continuous paths that
originate at the bottom boundary and end at the right one. This tracing process
is trivial as loops are detected by tracing until one ends up at the starting
location. The other tracing alternative is to start at the right boundary and
then the curve, if not a loop, must end up at the bottom boundary. In recent
years, the recovery of the topology of implicit forms, as is OM[C], has also been
investigated. These recovery methods, for example [16], could be used to recover
the winding number of C(u) without explicitly tracing the entire orthogonality
map.

3 The Visibility Question

Going beyond the orthogonality maps, we would like to consider global visibility
as well. This means that, for every point of inspection, one needs to resolve the
(view) point-curve visibility problem. The visibility could change at the silhou-
ette curves’ locations, S – locations where the view direction V is tangent to
the curve C(u) or S = {u | 〈V,N(u)〉 = 0}, where N(u) is the normal field of
C. We seek to split C(u) at all locations where the quantitative invisibility [2, 7]
changes. The original quantitative invisibility [2] algorithm starts by splitting
all polygonal edges with inhomogeneous visibility in the projection plane into
homogeneous segments. That is, if a polygonal edge is partially visible and par-
tially hidden, it is split at the location where the visibility changes. [7] extended
this work to freeform surfaces.

Reflecting on the problem at hand and seeking curve segments with homo-
geneous visibility from V , we need to split planar curve C(u) at its silhouette
points, S. However, we also need to split C(u) at all locations along the line of
sight from V through u ∈ S that pierce C after the silhouette locations. These are
the curve locations that become (in)visible behind silhouette points when viewed
from V . Figure 6 shows an example. In (a), the silhouette locations of C(u) from
view location P , S, are computed. Note here that V = V (u) = C(u)−P . In Fig-
ure 6 (b), these rays are extended to further pierce C(u). We now have segments
of C, each of which share homogeneous visibility, and by shooting a ray from P
toward the middle of each such curve segment, its visibility can be determined.
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(a)

C(t)

P (b)

C(t)

P

Fig. 6. A decomposition of a curve into curve segments with homogeneous visibility. In

(a), the silhouette locations, S, are computed. In (b), the silhouette rays are extended

to find the locations that become visible behind S

It should be noted we only care about visible vs. invisible segments while the
level of invisibility is of no interest in this application. More on this will be found
in [13].

Being able to determine the exact domain of C(u) that is visible from V , one
can create an atlas of views for a parameterized view location and/or direction.
Several options could be considered to parameterize the view location/direction,
following [13]:

– Use the unit circle C(α) as a parameterization for all possible view directions,
examining the geometry from infinity. Here, the visibility atlas will be a
bivariate function, Vh(α, u).

– Use C(v) as the view position’s parameterization. Looking only into the inte-
rior of the curve, we are faced with the art gallery [3] problem. Looking from
the inside out, we are examining, for example, the out-of-town coverage that
guards on the perimeter of the town could provide. Here again, the visibility
atlas is a bivariate function, Vh(v, u), and this time it is also symmetric.

– Use an independent bivariate mapping R(x, y) for the plane, possibly for the
entire IR2, to search for optimal placement of guards to watch curve C(u),
creating a visibility atlas of the form of Vh(x, y, u). This map could be re-
stricted to the interior of C(u), thereby allowing the guards to be everywhere
inside the gallery.

The visibility atlas answers the question of what is visible from a certain
view position and/or direction. Seeking the minimal number of guards to watch
a gallery or the minimal number of pieces of which a mold must be made to
injection-mold the part, could be answered by discretizing the problem and re-
ducing it to a set-covering problem [5], a problem that is NP-complete [5–p. 974]
in the general case.
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(a) (b)

Fig. 7. Two planar curves decomposed into a three-piece mold (a) and five-piece mold

(b). Note the decomposition in (b) is into non-radially monotone directions (see also

Figures 8 and 9)

1

2 3

Fig. 8. The decomposition from Figure 7 yields non radially-monotone decomposition

directions to form the pieces of the model. Nonetheless, a mold could be designed to

realize the geometry, as is shown here

Discretize the visibility map by sampling Vh at n different locations. If for
each sampled view location/direction, only one connected interval of C is vis-
ible, the solution of the set-covering problem could be reduced to polynomial
complexity [13]. By sorting all the intervals along the real line and using a
greedy approach to advance along the real line with the largest interval at ev-
ery step, the optimum is reached. Hence, only O(n log n) is required in such a
case.
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(a) (b)

θ

u

θ

u

Fig. 9. The visibility atlases of the curves in Figure 7. The atlas is defined as the visible

u domain (in light-gray) of C(u) as a function of the view direction θ ∈ [0, 360o]. In

(a), three views are sufficient to cover the domain while in (b) five are necessary. Only

the solid intervals are considered in the coverage; the dotted intervals are ignored. Note

the maps are periodic and so continuous intervals could cross boundaries

As a result, for problems where each view direction/location could hold or
need hold a single interval sub-domain of C, the optimal discrete solution is
tractable. This includes mold decomposition or the detection of the minimal set
of parts of which a mold must be made to injection-mold a part, if possible. This
is due to the fact that two disjoint intervals should be considered two different
parts of the designed mold.

Figure 7 presents two examples of the mold-accessibility polynomial solution
for a planar curve using the visibility atlas. In Figure 7 (a) three views are found
sufficient, decomposing this curve into a three-piece mold. In Figure 7 (b), the
shape must be decomposed into five pieces due to the cavities that are formed.
Interestingly enough, and due to the cavities, this decomposition is made into
five views that are not radially-monotone. This non-monotonicity makes the
mold design a bit more complex, yet still feasible, as is shown in Figure 8. By
extracting mold piece 1 in Figure 8, mold pieces 2 and 3 could be extracted as
well.

Figure 9 presents the visibility atlases of the two curves in Figure 7 along
with the three and five view directions selected to complete the coverage. Only
one interval is used in each view and that interval is marked by a solid line in
Figure 9 whereas the other intervals in that view are marked by dotted lines.
180 sampled views were used in Figure 9 (a) while 360 sampled views were
used in Figure 9 (b). While the discrete sampling is not necessarily optimal,
it is conservative in the sense that the offered solutions do cover the entire
domain.
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(a)

C(u)

(b) u

u

Fig. 10. Art gallery solution for the freeform shape in (a). Three guards are shown to

be sufficient to cover the entire domain of this shape (as defined by the walls). In (b),

the (symmetric) visibility atlas of this shape is presented along with the three selected

locations whose union covers the entire parametric domain of the shape

To conclude this discussion, in Figure 10, we present one example of the art
gallery problem, solving for a univariate parameterization of the view location
along the curve itself, C(u), and looking only into the interior domain of the
curve. Three guards are found sufficient in this case, as is shown in Figure 10 (a),
using the symmetric visibility atlas shown in Figure 10 (b). This set-covering case
is general and hence its solution has an exponential complexity in the number of
guards. Again, more on this visibility problem in the context of freeform curves,
including the reduction of the freeform continuous art gallery problem into a
discrete set-covering problem, can be found in [13].

4 Simple Projection of Space Curves

Consider the following simple problem: Given a simple 3-space regular paramet-
ric curve C(u), find all the orthographic projection directions, if they exist, along
which the image of the planar projection, Cp(u), is simple or self-intersection-
free. Clearly, a 3-space curve could self-intersect. Yet, a self-intersection-free 3-
space curve could still intersect, once projected onto some plane. Here, we seek
to find (all) directions from which C(u)’s projection is simple.

While this problem might seem non trivial, a simple observation could clarify
the solution process. Consider some viewing direction V . If there exists two
different locations on C, C(u) and C(v), u = v, such that (C(u)−C(v))× V =
0, V cannot serve a direction that yields a simple curve projection. In other
words, we seek the directions such that for all u and v in the domain, u = v,
(C(u)− C(v))× V = 0.
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Definition 4. The Difference Function FM(u, v) of a C1 regular 3-space para-
metric curve C(u) : D ∈ IR→ IR3 is defined as

FM(u, v) = C(u)− C(v) : [D ×D]→ IR3.

This difference map was used in the past [8, 10] to compute the distance be-
tween two different planar curves and also to find their intersection locations.
The square of ||C1(u)−C2(v)|| is a rational scalar field, for rationals Ci. Hence,
its zeros locate the intersection locations, if any. Let Ñ1(u) be an (unnormal-
ized) normal field of planar curve C1(u) computed by rotating C ′(u) 90 degrees
in the clockwise direction, in the plane. In [11], the scalar bivariate field of〈
C1(u)− C2(v), Ñ1(u)

〉
for planar curves Ci was considered. Given two Bézier

or B-spline planar regular curves, the control coefficients of the B-spline field of〈
C1(u)− C2(v), Ñ1(u)

〉
is derived. Then, if all coefficients are of the same sign,

the curves do not intersect. The symmetric test could be applied using Ñ2(v) as〈
C1(u)− C2(v), Ñ2(v)

〉
, to provide an even better bound for intersection-free

cases.
However, and going back to 3-space curves, C(u)−C(v), u = v also hints at

directions that pierce the curve more than once and hence are invalid as simple
curve projection directions. Centrally map all these directions of FM onto the
unit sphere S2. Every region of S2 that is not covered by FM’s central projection
could then serve as a valid projection. In fact, it is sufficient to project only half
of FM due to its inherent symmetry, and consequently, one should only consider
the sub domain of D ×D for which u > v.

Along the diagonal, u = v, the magnitude of FM vanishes identically. Inter-
estingly enough, the neighborhood of the diagonal of FM represents the limit
of C(u) − C(v) where u and v approach the same value. In other words, the
diagonal expresses the derivative of C and hence could be derived as the tan-
gent field of C. Indeed, the tangent field, when mapped onto S2, delineates the
valid views from views where the curves starts to self-intersect. Nonetheless, the
tangent field by itself is insufficient and one must consider all possible views in
C(u)− C(v), as will be shortly demonstrated.

A practical algorithm to detect all valid projection directions would perform
the following steps:

1. Given C(u), define the lifted FM(u, v) bivariate function.
2. Centrally project the sub domain of FM(u, v) for which u > v onto the

unit sphere S2. This projection could, in practice, be implemented using the
projection of an arbitrarily close tessellated approximation of FM(u, v).

3. Having a binary map on the unit sphere of covered vs. uncovered regions,
one can either:
(a) Extract all the uncovered regions over S2 that contain the views with a

simple projection, if any, or
(b) Find a projection direction in the middle of the uncovered regions. These

centered locations offer robust projection directions that yield a simple
curve projection, even after small perturbations.
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(a) (b)

Fig. 11. Computation of directions of a simple 3-space curve that yields a simple

projected curve. In (a) an invalid direction is presented where the S2 covers that

direction whereas in (b) a valid direction is shown with an uncovered direction in S2.

The projection of FM onto S2 is shown in grey; the unit tangent field of the curve is

shown as a pale line

(a) (b)

(c) (d)

Fig. 12. Computation of the directions that yield a simple projection of a simple 3-space

curve. (a) and (c) provide two valid directions whereas (b) shows an invalid one. (c) and

(d) present the limiting cases of a cusp (c) and a tangency (d). The projection of FM
onto S2 is shown in grey; the unit tangent field of the curve is shown as a pale line

Stage 3b in this proposed algorithm could be accomplished by resorting to
image processing techniques. Centrally project the binary map over S2 onto the
six faces of a bounding cube. By applying image dilation procedures on all six
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faces, one can find the valid viewing directions, if any, that are as far as possible
from the covered regions. See, for example, [12] for more on such a dilation
process, in a similar context.

Figure 11 shows one example where a simple periodic 3-space C2 cubic B-
spline curve with 11 control points is projected twice, once with an intersection
(in Figure 11 (a)) and once as a simple projection (in Figure 11 (b)). In each case,
the projected curve is plotted on the left side and the unit sphere of directions
is shown on the right, with the invalid regions painted in solid light grey. Also
shown, in pale grey, is the normalized tangent field of the curve, which is on S2.
This tangent field serves to delineate some portions of the light grey solid regions
(the projection of FM onto S2) but not all. The reason is that in some cases
two independent regions of the curve, which are approaching, become tangent,
and then intersect in the projection plane. Here the tangent field is irrelevant,
yet (global) self-intersection still occurs.

Figure 12 shows a second, more complex example of a simple periodic 3-
space C2 cubic B-spline curve with 22 control points that is examined for simple
projection directions. Here, the set of valid projections is narrow and yet easily
identified once FM(u, v), u > v is projected onto S2. Again, appearing in yellow,
the unit tangent field of the curve is also presented.

Finally, it should be noted that if C(u0) − C(v0) is an invalid direction, so
is C(v0) − C(u0). In other words, when projecting the FM(u, v), u > v field
onto S2, the antipodal projection should be considered as well. In Figures 11
and 12, only the original projection is considered for clarity, while the center
of the unit sphere is drawn as a small sphere. The dual projection require-
ment is equivalent to finding a direction that “sees” the sphere’s center over
the background. In other words, in a valid view direction, the sphere center is
covered by FM(u, v), u > v, from neither the front side nor the back side of the
sphere.

5 Conclusions and Future Work

This work investigated a few lifting methods for extracting the global properties
of freeform rational curves. The features of the orthogonality maps should be
further investigated as well as extended into parallel and/or angular maps:

Definition 5. The Angular Function AF (u, v) of a C1 regular planar paramet-
ric curve C(u) : D ∈ IR→ IR2 is defined as

AF (u, v) =
〈C ′(u),C ′(v)〉2

〈C ′(u),C ′(u)〉 〈C ′(v),C ′(v)〉 : [D ×D]→ IR.

and

Definition 6. The γ Angular Map AM[γ] of a C1 regular planar paramet-
ric curve C(u), denoted AM[C, γ], is the constant set of the angular function,
AF (u, v) = cos2(γ).
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(a) AM[γ = 0] (b) AM[γ = 30o] (c) AM[γ = 60o]

Fig. 13. Angular maps of the curve shown in Figure 1

Parallel and orthogonal maps are two extreme cases of angular maps, for
which γ = 0 and γ = π/2. Being more general, the angular map lifting scheme
deserves some more research. Figure 13 presents a few examples of angular maps
of the curve shown in Figure 1. In (a), a parallel map (AM[γ] for γ = 0) is
presented. The diagonal line of u = v is clearly a valid solution for the paral-
lel map. Yet, one interesting property of the parallel map, which is simple to
verify, is that the number of off-diagonal branches that intersect the main di-
agonal exactly equal the number of inflection points in the curve, two in this
case. The angular maps, for general angles, offer, for each curve location, in-
formation regarding how far one can move before the curve turns γ degrees.
This information is etched onto these maps as the vertical (or horizontal) dis-
tance from the diagonal location. Figures 13 (b) and (c) show two maps of
the curve in Figure 1, for γ of 30 and 60 degrees, respectively. If these maps
are rebuilt using arc-length parameterizations, then they will be able to answer
questions such as maximum and/or minimal turning angles of the curve per
unit-length.

Open planar curves break the periodicity of the orthogonal/parallel/angular
maps and hence would require special boundary conditioning. Piecewise C1 pla-
nar curves also deserve attention, when investigating these maps. The C0 loca-
tions would introduce discontinuities into the angular functions and their proper
handling and map extraction would be more difficult.

In Section 4, a method to derive the proper projection directions of a simple
space curve that would yield a simple curve has been proposed. This method
could clearly be used to find directions from which surface S(u, v) is com-
pletely visible. When the 4-variate vector field of F (u, v, s, t) = S(u, v)− S(s, t)
is projected onto S2, its uncovered regions would yield the completely visi-
ble projection directions, if any. It should be noted that this computation is
not the same as finding a direction that presents no silhouettes. A surface
could possess no silhouettes from a certain view direction and yet still occlude
itself.
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Abstract. This paper uses the symmetry properties of circles and Bern-
stein polynomials to establish a series of interesting barycentric properties
of rational biquadratic Bézier patches. A robust algorithm is presented,
based on these properties, for the conversion of Dupin cyclide patches
into Bézier form. A set of conversion examples illustrates the use of this
algorithm.

1 Introduction

Rational Biquadratic Bézier Surfaces (RBBSs) are tensor product parametric
surfaces widely used in the first generation of computer graphics applications
and geometric modelling systems. Good introductions to RBBSs may be found
in [1, 2, 3, 4].

Dupin cyclide surfaces represent a family of ringed surfaces, i.e., surfaces
generated by a circle of variable radius sweeping through space [5, 6, 7]. It is
possible to formulate them either as algebraic or parametric surfaces. In re-
cent decades, the interest of several authors in these surfaces relates to their
potential value in the development of CAGD tools [8, 9]. Also, cyclide inter-
sections and the use of cyclides as blending surfaces have been investigated
[10, 11].

The primary aim of this paper is to prove a series of useful properties of
RBBSs, called barycentric properties, and to show how they can be used to
convert cyclide patches into RBBSs. Section 2 gives background information
concerning Rational Quadratic Bézier Curves (RQBCs) and RBBSs, introduces
the Dupin cyclides, and discusses an algorithm for conversion of Dupin cyclide
patches to RBBSs. Section 3 shows the use of RQBCs to represent circular arcs.
Section 4 states and proves a set of new barycentric properties of RBBSs. Sec-
tion 5 uses these properties to define a robust new algorithm for the conversion
of Dupin cyclides into RBBSs, and illustrates some of the conversion results
obtained. Section 6 presents our conclusions and suggests directions for future
work.
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2 Background

2.1 Rational Quadratic Bézier Curves and Surfaces

A Rational Quadratic Bézier Curve (RQBC) is a second degree parametric curve
defined by:

−−−−→
OM(t) =

1
2∑

i=0

wiBi(t)

(
2∑

i=0

wiBi(t)
−−→
OPi

)
, t ∈ [0, 1] (1)

where Bi(t) are quadratic Bernstein polynomials defined as: B0(t) = (1− t)2 ,
B1(t) = 2t (1− t) and B2(t) = t2, and for i ∈ {0, 1, 2}, wi are weights associated
with the control points Pi. For a standard RQBC w0 and w2 are equal to 1, while
w1 can be used to control the type of conic defined by the curve.

Rational Biquadratic Bézier Surfaces (RBBSs) are defined by a tensor prod-
uct of two RQBCs by:

−−−−−−−→
OM (u, v) =

1
2∑

i=0

2∑
j=0

wijBi (u) Bj (v)

2∑
i=0

2∑
j=0

wijBi (u) Bj (v)
−−−→
OPij (2)

More details on Bézier curves and surfaces can be found in [12, 4].

2.2 Dupin Cyclides

Non-degenerate Dupin cyclides can be characterized by either of the following
two equivalent implicit equations:(

x2 + y2 + z2 − μ2 + b2
)2

= 4 (ax− cμ)2 + 4b2y2 (3)(
x2 + y2 + z2 − μ2 − b2

)2
= 4 (cx− aμ)2 − 4b2z2 (4)

Parameters a, b and c are related by c2 = a2 − b2. The parameter a is always
greater than or equal to c. Parameters a, c and μ determine the type of the
cyclide. When c < μ ≤ a it is a ring cyclide, when 0 < μ ≤ c it is a horned cyclide,
and when μ > a it is a spindle cyclide. The parametric form is represented by
equation (5), where parameters θ and ψ satisfy (0 ≤ θ, ψ ≤ 2π):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(θ,ψ) =
μ(c− a cos θ cos ψ) + b2 cos θ

a− c cos θ cos ψ

y(θ,ψ) =
b sin θ × (a− μ cos ψ)

a− c cos θ cos ψ

z(θ,ψ) =
b sin ψ × (c cos θ − μ)

a− c cos θ cos ψ

(5)
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These are the most important properties of Dupin cyclide surfaces:

– Simple mathematical representation in either implicit or parametric form.
– Circular lines of curvature. These lines of curvature correspond to isopara-

metric lines of constant θ or ψ. The angle between the surface normal and
the principal normal on the lines of curvature is also constant.

– Each cyclide has two perpendicular planes of symmetry. The intersections
of a cyclide with its planes of symmetry are two pairs of circles called the
principal circles. These are the lines of curvature of the cyclide for which
ψ = 0, ψ = π, θ = 0 or θ = π.

– In the parametric form, knowledge of the four principal circles allows the
computation of the parameters a, c, and μ.

– The curvature line and tangent cone properties given above make it easy to
use Dupin cyclides to create blends between other cyclide surfaces, including
the important special cases of circular cylinders, circular cones, spheres and
toruses.

2.3 Conversion of Dupin Cyclides to RBBSs

If a RBBS is parameterized in terms of u and v, its isoparametric curves are
conics. Lines of curvature of Dupin cyclides are circles, which are particular
cases of conics. It is thus possible to convert a Dupin cyclide patch into an
RBBS. In the rest of this paper, the Dupin cyclide patch to be converted will
be referred to as a cyclide patch. It is assumed to be delimited by the curvature
lines corresponding to parameter values (θ0, θ1,ψ0,ψ1).

A conversion algorithm of the type discussed was proposed in [5]. The con-
trol points and their associated weights were determined from the parametric
equation of the Dupin cyclide (equation (5)) by the following method:

1. The parameter transformations

∀θ ∈ R− (π + 2πZ), cos θ =
1− tan2 U

1 + tan2 U
, sin θ =

2 tan U

1 + tan2 U
(6)

where U = tan(θ/2), together with corresponding expressions for cosψ and
sin ψ in terms of V = tan(ψ/2), were used to obtain rational quadratic forms
for the three coordinates in terms of U, V .

2. A linear reparametrization was now applied to obtain a representation in
terms of u, v such that u, v ∈ [0, 1].

3. The common denominator of the resulting scalar-valued rational biquadrat-
ics in u and v was reformulated in terms of the quadratic Bernstein basis
functions. The resulting coefficients of those basis functions were identified
with the weights wij in the denominator of equation (2).

4. Finally, with the weights known, the numerators of the three rational bi-
quadratics were similarly reformulated. This gave the coordinates of the
patch control points, expressed in terms of the defining constants of the par-
ticular cyclide, a, c, μ, together with the bounding parameter values of the
original cyclide patch.



204 S. Foufou, L. Garnier, and M.J. Pratt

Fig. 1. Conversion of a Dupin cyclide patch (left) to RBBS (right) using Pratt’s original

algorithm

Fig. 2. Incorrect conversion. Left, the cyclide patch. Middle, the resulting RBBS repre-

senting the complementary patch, not the intended one. Right, the correct correspond-

ing RBBS

Figure 1 shows an example of the conversion of a Dupin cyclide patch into a
RBBS using this algorithm.

A problem with this algorithm is that the function tan is discontinuous, not
being defined for values π

2 + πZ. This has the results that

1. for certain choices of patch boundary the reparametrization functions are
not defined (though these special cases could be identified and appropriate
limiting values used);

2. more importantly, the algorithm gives incorrect results when π ∈ ]θ0, θ1[ or
when π ∈ ]ψ0,ψ1[.

Figure 2 illustrates a case of erroneous results from this algorithm. The cyclide
patch (left subfigure) is defined by a = 6, μ = 3, c = 2, θ0 = π

4 , θ1 = 5π
6 ,

ψ0 = 2π
3 and ψ1 = 4π

3 . To obtain the RBBS of the right subfigure, that correctly
represents the cyclide patch of the left subfigure, we used a new variant of this
algorithm obtained by taking the absolute value of the weights as calculated by
Pratt’s original formula, i.e.,

wij = |a (1 + Gi) (1 + Hj)− c (1−Gi) (1−Hj)| (7)

In this formula, the variables Gi and Hj are intermediate values computed from
tan of θ0/2, θ1/2, ψ0/2 and ψ1/2 (see [5] for further details).

As we have seen, the boundary parameter values θ0, θ1, ψ0 and ψ1, together
with the values of a, c and μ, can be used to determine control points and weights
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Fig. 3. Conversion of a whole Dupin cyclide into a set of RBBSs

Fig. 4. Conversion of a cyclide patch. Left, the cyclide patch. Middle, the RBBS given

by Pratt’s algorithm. Right, the RBBS given by the variant of Pratt’s algorithm

of the RBBS. If θ0 = 0 and θ1 = 4π
3 , the computed control points calculated by

the variant algorithm incorrectly correspond to the patch delimited by θ0 = − 2π
3

and θ1 = 0. We must therefore require |θ0 − θ1| < π and |ψ0 − ψ1| < π. Taking
this constraint into consideration gives several possibilities for conversion of a
complete Dupin cyclide. Figure 3 left illustrates a Dupin cyclide converted into
9 RBBSs using this new variant of the algorithm. Combined use of both the
original and the variant algorithm allows to decrease the number of RBBSs
to 6, which is believed to be the minimal number of RBBSs necessary for the
representation of a complete Dupin cyclide (Figure 3 right).

The new variant of this algorithm makes it possible to convert a whole Dupin
cyclide into a set of RBBSs, but it is still not possible to convert a cyclide patch
delimited by a curve obtained with one of the parameters equal to π. Moreover,
having only positive weights is not enough to work correctly for certain cases
where some control points need to have negative weights.

Figure 4 shows a case where the original algorithm works correctly (the mid-
dle subfigure) while the new variant fails (the right subfigure). The cyclide patch
is defined by a = 6, c = 2, μ = 3, θ0 = −π

3 , θ1 = π
2 , ψ0 = 0 and ψ1 = π

2 . The
output of the new variant is completely wrong: Border curve C ′ is the comple-
ment, on the circle, of the border curve C of the cyclide patch. This is due to the
fact that w10 is positive while it should be negative to model the border curve
C. The same problem occurs for w11.

Another conversion example is given in Figure 5. Parameters defining the
cyclide patch are a = 6, c = 2, μ = 3, θ0 = 2π

3 , θ1 = 4π
3 , ψ0 = 5π

6 and ψ1 = 3π
2 .

The original algorithm gives exactly the complement of the cyclide patch: the
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Fig. 5. A conversion example where both Pratt’s algorithm and its variant fail

corner points are those of the cyclide patch while thr delimiting curves are the
complements, on the circle, of the curves defining the cyclide patch. On the other
hand, the RBBS obtained by the new variant of this algorithm (right subfigure)
has the same corner points and border curves as the cyclide patch, but the
central control point P11 is not correct; the weight w11 should be negative, while
the new variant gives only positive weights.

A less problematic conversion algorithm, based on barycentric properties of
RBBSs and geometric properties of Dupin cyclides is proposed in section 5.

3 Modeling Circular Arcs Using RQBCs

RQBCs can be used to model conics. Three control points and a scalar value
(the weight of the middle control point) are enough to define an arc of a conic. In
this section, we give some results on the expression of circular arcs using RQBC.
Theorem 1 shows how to define a circle from two points and two tangents on
these points. Theorem 2 presents how to compute the middle control point of the
RQBC that represents a given circular arc. Theorem 3 shows how to compute
the weight of the middle control point of the RQBC that represents a given
circular arc. Figure 6 shows the modeling of circular arcs using RQBC. This is
the geometric construction used for Theorems 1, 2 and 3. C(O0, R) is a circle of
centre O0 and radius R. Segments [P0P1] and [P2P1] are tangents to the circle
at points P0 and P2. I1 is the midpoint of segment [P0P2]. P is the median plane
of segment [P0P2].

Theorem 1. Circle from two points and tangents at these points.

– If the circle C(O0, R) exists then P1 ∈ P and P1 /∈ [P0P2]. The radius is
R = O0P0 and the centre O0 is given by formula:

−−−→
P1O0 = t0

−−→
P1I1 t0 = P0P 2

1−−→
I1P1•−−−→P0P1

(8)

– In the plane determined by C, the geometric angle P̂0O0P2 is less than π, this
means that if we take a parametrization γ of the circle in terms of cosine
and sine such as P0 = γ (θ0), P2 = γ (θ1), we have |θ0 − θ1| < π.
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Fig. 6. Modeling circular arcs by RQBC

Theorem 2. Computing control point P1 when the centre of the circle is known.
The RQBC is the arc of the circle C passing through P0 and P2. In this case,

the control point P1 satisfies:

−−→
I1P1 = t1

−−→
O0I1 t1 =

−−−→
O0P0•−−→I1P0−−−→
O0P0•−−−→O0I1

(9)

Theorem 3. Computing the weight w1.
The RQBC defined by control points P0, P1 and P2 and the weight w1 is a

circular arc if and only if the following condition hold:

|1 + w1|R = |O0I1 + w1O0P1| (10)

The RQBC defines the smaller arc of the circle if:

w1 =
O0I1 −R

R−O0P1
=

O0I1 −O0P0

O0P0 −O0P1
> 0 (11)

It defines the larger arc of the circle if:

w1 = −O0I1 + R

R + O0P1
= −O0I1 + O0P0

O0P0 + O0P1
< 0 (12)

Proofs of these three theorems can be easily obtained by combining properties
of RQBC with those of the circle and scalar product.

4 Barycentric Properties of RBBSs

Let S0 be a Rational Biquadratic Bézier Surface (RBBS) defined according to
formula (2) by control points (Pij)0≤i,j≤2 and weights (wij)0≤i,j≤2 with w00 =
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w02 = w20 = w22 = 1. In order to model surfaces with spherical curvatures
by surface S0, we should have the following constraints on control points: P01

belongs to the median plane of [P00P02], P10 belongs to the median plane of
[P00P20], P21 belongs to the median plane of [P20P22] and P12 belongs to the
median plane of [P02P22].

The position of control point P11 is less obvious than the positions of the
others. The following four theorems prove that P11 belongs to three particular
lines. A set of interesting barycentric properties of RBBSs that helps in the
construction of these lines are given and proved.

Theorem 4. Let I0,J0, I2 and J2 be respectively the midpoints of the segments
[P00P02], [P00P20], [P20P22] and [P02P22]. We have the following four relations:

−−−−−−−−→
OM

(
0,

1
2

)
=

1
1 + w01

(−−→
OI0 + w01

−−−→
OP01

)
(13)

−−−−−−−−→
OM

(
1,

1
2

)
=

1
1 + w21

(−−→
OI2 + w21

−−−→
OP21

)
−−−−−−−−→
OM

(
1
2
, 0
)

=
1

1 + w10

(−−→
OJ0 + w10

−−−→
OP10

)
(14)

−−−−−−−−→
OM

(
1
2
, 1
)

=
1

1 + w12

(−−→
OJ2 + w12

−−−→
OP12

)
Proof. In order to prove the result (13) for points

−−−−−−−→
OM (0, 1

2
) and

−−−−−−−→
OM (1, 1

2
), let

us recall that B0 (0) = 1, B1 (0) = B2 (0) = 0, B2 (1) = 1, B1 (1) = B0 (1) = 0,
B1

(
1
2

)
= 1

2 , B0

(
1
2

)
= B2

(
1
2

)
= 1

4 , and if I is the midpoint of a segment [AB],
then for every point O we have

−→
OA +

−−→
OB = 2

−→
OI. By Formula (2), the point−−−−−−−→

OM (0, 1
2
) on the RBBS is:

−−−−−−−−→
OM

(
0,

1
2

)
=

2∑
i=0

2∑
j=0

wijBi (0) Bj

(
1
2

)−−−→
OPij

2∑
i=0

2∑
j=0

wijBi (0)Bj

(
1
2

) =

2∑
j=0

w0jBj

(
1
2

)−−−→
OP0j

2∑
j=0

w0jBj

(
1
2

)
=

1
w00
4 + w01

2 + w02
4

(w00

4
−−−→
OP00 +

w01

2
−−−→
OP01 +

w02

4
−−−→
OP02

)
=

1
1
4 + w01

2 + 1
4

(
1
4

(−−−→
OP00 +

−−−→
OP02

)
+

w01

2
−−−→
OP01

)
=

1
1
2 + w01

2

(
1
4
2
−−→
OI0 +

w01

2
−−−→
OP01

)
=

2
1 + w01

(
1
2
−−→
OI0 +

1
2
w01
−−−→
OP01

)
=

1
1 + w01

(−−→
OI0 + w01

−−−→
OP01

)
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On the other hand, point
−−−−−−−→
OM (1, 1

2
) on the RBBS is:

−−−−−−−−→
OM

(
1,

1
2

)
=

2∑
i=0

2∑
j=0

wijBi (1)Bj

(
1
2

)−−−→
OPij

2∑
i=0

2∑
j=0

wijBi (1)Bj

(
1
2

)

=
1

2∑
j=0

w2jBj

(
1
2

) 2∑
j=0

w2jBj

(
1
2

)−−−→
OP2j

=
1

w20
4 + w21

2 + w22
4

(w20

4
−−−→
OP20 +

w21

2
−−−→
OP21 +

w22

4
−−−→
OP22

)
=

1
1
4 + w21

2 + 1
4

(
1
4

(−−−→
OP20 +

−−−→
OP22

)
+

w21

2
−−−→
OP21

)
=

1
1
2 + w21

2

(
1
4
2
−−→
OI2 +

w21

2
−−−→
OP21

)
=

2
1 + w21

(
1
2
−−→
OI2 +

w21

2
−−−→
OP21

)
=

1
1 + w21

(−−→
OI2 + w21

−−−→
OP21

)
Result (14) of

−−−−−−−→
OM ( 1

2
, 0) and

−−−−−−−→
OM ( 1

2
, 1) can be proved in a similar way. ��

Theorem 5. Let G0 be the isobarycentre of points P00, P02, P20, P22 and G2

the barycentre of weighted points (P10,w10), (P01,w01), (P12,w12), (P21,w21).
We define the value w = w01 + w10 + w12 + w21 and G1 as the barycentre of the
weighted points (G0, 2) and (G2,w).

The point M
(

1
2 , 1

2

)
satisfies the two following formulas:

−−−−−−−−→
OM

(
1
2
,
1
2

)
=

1
2 + w + 2w11

(
(2 + w)

−−→
OG1 + 2w11

−−−→
OP11

)
(15)

w11

−−−−−−−−−−→
M

(
1
2
,
1
2

)
P11 = −2 + w

2

−−−−−−−−−−→
M

(
1
2
,
1
2

)
G1 (16)

From the last formula we deduce that P11 belongs to the line
(
M
(

1
2 , 1

2

)
G1

)
.

Proof. Evaluating equation (2) of the RBBSs at the point
−−−−−−−→
OM ( 1

2
, 1

2
) gives:

−−−−−−−−→
OM

(
1
2
,
1
2

)
=

2∑
i=0

2∑
j=0

wijBi

(
1
2

)
Bj

(
1
2

)−−−→
OPij

2∑
i=0

2∑
j=0

wijBi

(
1
2

)
Bj

(
1
2

)
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First, let us consider the denominator of this fraction:
2∑

i=0

2∑
j=0

wijBi

(
1
2

)
Bj

(
1
2

)
=

2∑
i=0

Bi

(
1
2

)(wi0

4
+

wi1

2
+

wi2

4

)
=

w00
4 + w01

2 + w02
4

4
+

w10
4 + w11

2 + w12
4

2
+

w20
4 + w21

2 + w22
4

4

=
w00+w02+w20+w22

4 + w01+w10+w21+w12
2

4
+

w11
2

2

=
w00 + w02 + w20 + w22

16
+

w01 + w10 + w21 + w12

8
+

w11

4

=
2 + w + 2w11

8
Second, the numerator can be similarly expressed as:

2∑
i=0

Bi

(
1
2

)(wi0

4
−−−→
OPi0 +

wi1

2
−−−→
OPi1 +

wi2

4
−−−→
OPi2

)
=

w00

16
−−−→
OP00 +

w01

8
−−−→
OP01 +

w02

16
−−−→
OP02 +

w10

8
−−−→
OP10 +

w11

4
−−−→
OP11 +

w12

8
−−−→
OP12 +

wi0

16
−−−→
OP20 +

w21

8
−−−→
OP21 +

w22

16
−−−→
OP22

=
(

1
16
−−−→
OP00 +

1
16
−−−→
OP02 +

1
16
−−−→
OP20 +

1
16
−−−→
OP22

)
+(w01

8
−−−→
OP01 +

w10

8
−−−→
OP10 +

w12

8
−−−→
OP12 +

w21

8
−−−→
OP21

)
+

w11

4
−−−→
OP11

=
1
4
−−→
OG0 +

w

8
−−→
OG2 +

w11

4
−−−→
OP11

We may then write:
−−−−−−−−→
OM

(
1
2
,
1
2

)
=

1
2+w+2w11

8

(
1
4
−−→
OG0 +

w

8
−−→
OG2 +

w11

4
−−−→
OP11

)
=

8
2 + w + 2w11

(
1
4
−−→
OG0 +

w

8
−−→
OG2 +

w11

4
−−−→
OP11

)
=

1
2 + w + 2w11

(
2
−−→
OG0 + w

−−→
OG2 + 2w11

−−−→
OP11

)
=

1
2 + w + 2w11

(
(2 + w)

−−→
OG1 + 2w11

−−−→
OP11

)
which proves the result (15). This latter is valid for any point O so it is valid for
the point M

(
1
2 , 1

2

)
. Hence, substituting O by M

(
1
2 , 1

2

)
in (15) gives:

(2 + w + 2w11)
−−−−−−−−−−−−−−−−→
M

(
1
2
,
1
2

)
M

(
1
2
,
1
2

)
=

(2 + w)
−−−−−−−−−−→
M

(
1
2
,
1
2

)
G1 + 2w11

−−−−−−−−−−→
M

(
1
2
,
1
2

)
P11
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Consequently, we have:
−→
0 = (2 + w)

−−−−−−−−→
M ( 1

2
, 1

2
) G1 + 2w11

−−−−−−−−→
M ( 1

2
, 1

2
) P11. Hence:

w11

−−−−−−−−→
M ( 1

2
, 1

2
) P11 = −2 + w

2
−−−−−−−−→
M ( 1

2
, 1

2
) G1 ��

Theorem 6. Let G3 be the barycentre of the weighted points (P00, 9), (P20, 9),
(P02, 1), (P22, 1), (P01, 6w01), (P21, 6w21), (P10, 18w10), (P12, 2w12), and W1 =
20 + 6w01 + 18w10 + 2w12 + 6w21.
The point M

(
1
2 , 1

4

)
satisfies the two following formulas:

−−−−−−−→
OM

(
1
2 , 1

4

)
= 1

W1+12w11

(
W1
−−→
OG3 + 12w11

−−−→
OP11

)
(17)

(W1 + 12w11)
−−−−−−−−→
G3M

(
1
2 , 1

4

)
= 12w11

−−−−→
G3P11 (18)

From the last formula we deduce that P11 belongs to the line
(
G3M

(
1
2 , 1

4

))
.

Proof. Before starting the proof of result (17) for point
−−−−−−−→
OM ( 1

2
, 1

4
), recall that

B0

(
1
4

)
= 9

16 , B1

(
1
4

)
= 3

8 and B2

(
1
4

)
= 1

16 . By formula (2) we have:

−−−−−−−−→
OM

(
1
2
,
1
4

)
=

1
2∑

i=0

2∑
j=0

wijBi

(
1
2

)
Bj

(
1
4

) 2∑
i=0

2∑
j=0

wijBi

(
1
2

)
Bj

(
1
4

)−−−→
OPij

The denominator can be easily reduced to:

2∑
i=0

2∑
j=0

wijBi

(
1
2

)
Bj

(
1
4

)
=

2∑
i=0

Bi

(
1
2

)(
9wi0

16
+

6wi1

16
+

wi2

16

)
=

9w00 + 9w20 + w02 + w22 + 6w01 + 6w21 + 18w10 + w12 + 12w11

64

=
20 + 6w01 + 6w21 + 18w10 + w12 + 12w11

64

=
W1 + 12w11

64

Using this result and expanding the numerator gives the required proof:

−−−−−−−−→
OM

(
1
2
,
1
4

)
=

64
W1 + 12w11

(
9
64
−−−→
OP00 +

6w01

64
−−−→
OP01 +

w02

64
−−−→
OP02

)
+

64
W1 + 12w11

(
18
64
−−−→
OP10 +

12w11

64
−−−→
OP11 +

2w02

64
−−−→
OP12+

)
+

64
W1 + 12w11

(
9
64
−−−→
OP20 +

6w21

64
−−−→
OP21 +

1
64
−−−→
OP22

)
=

1
W1 + 12w11

(
W1
−−→
OG3 + 12w11

−−−→
OP11

)
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From these results we deduce:

(W1 + 12w11)
−−−−−−−−−→
G3M

(
1
2
,
1
4

)
= 12w11

−−−−→
G3P11

which is the result (18). ��

Theorem 7. Let G4 be the barycentre of the weighted points (P00, 9), (P20, 1),
(P02, 9), (P22, 1), (P10, 6w10), (P12, 6w12), (P01, 18w01), (P21, 2w21), and W2 =
20 + 6w10 + 18w01 + 2w21 + 6w12.

The point M
(

1
4 , 1

2

)
satisfies the two following formulas:

−−−−−−−→
OM

(
1
4 , 1

2

)
= 1

W2+12w11

(
W2
−−→
OG4 + 12w11

−−−→
OP11

)
(19)

(W2 + 12w11)
−−−−−−−−→
G4M

(
1
4 , 1

2

)
= 12w11

−−−−→
G4P11 (20)

From the last formula we deduce that P11 belongs to the line
(
G4M

(
1
4 , 1

2

))
.

Proof. The results (19) and (20) can be proved in the same way as (17) and (18)
or (15) and (16). ��

5 A New Dupin Cyclide to RBBS Conversion Algorithm

In this section we propose a new algorithm (Algorithm 1) for converting a Dupin
cyclide patch or a whole Dupin cyclide into RBBS form. The algorithm is based
on the barycentric properties of RBBSs given by the theorems of Sections 3
and 4.

The goal is to develop a conversion method that exploits and keeps circular
symmetries along the isoparametric curves of Dupin cyclides. These latter are
not surfaces of revolution, so, in step six of this algorithm, we have to be sure that
lines (G1Γ (θ2,ψ2)), (G3Γ (θ2,ψ3)) and (G4Γ (θ3,ψ2)) have the same point of
intersection. This is true provided that θ0 and θ1 (or ψ0 and ψ1) are symmetrical
compared to 0 or π on the trigonometric circle.

A set of conversion examples is presented in the following sections.

Algorithm 1

Given: A Dupin cyclide defined by a parametric map Γ , and a patch on this
cyclide delimited by parameter values: θ0, θ1,ψ0 and ψ1 with |θ0 − θ1| < π
and |ψ0 − ψ1| < π. These values also define four (circular) curvature lines
on the Dupin cyclide

Find: The representation of this patch as a RBBS S over [0, 1]×[0, 1], defined
by nine control points Pij and nine weights wij , 0 � i, j < 2. Weights wij

will be equal to one except w10, w01, w21 , w12 and w11, which can be either
positive or negative.
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Procedure:
1. Obtain corner control points using: P00 = Γ (θ0,ψ0), P02 = Γ (θ1,ψ0),

P20 = Γ (θ0,ψ1), P22 = Γ (θ1,ψ1).
2. Find centres of the four circles of curvature using a point on each line

of curvature.
3. Find control points P01, P10, P12 and P21 on the median planes of cur-

vature lines using equation (9) of Theorem 2.
4. Calculate weights w10, w01, w21 and w12 using equations (11) or (12) of

Theorem 3.
5. Consider two RQBC γu and γv defined on the borders of the region to

be converted. Control points and the weight of γu are P00, P10, P20 and
w10. Those of γv are P00, P01, P02 and w01.
• Find θ2 and θ3, the solutions of equations γu( 1

2 ) = Γ (θ2,ψ0) and
γu( 1

4 ) = Γ (θ3,ψ0).
• Find ψ2 and ψ3, the solutions of equations γv( 1

2 ) = Γ (θ0,ψ2) and
γv( 1

4 ) = Γ (θ0,ψ3).
6. Compute control point P11 as the intersection of lines (G1Γ (θ2,ψ2)) and

(G3Γ (θ2,ψ3)). Constructions of G1 and G3 are given in Theorems 5 and
6.

7. Compute weight w11, using equation (16) of Theorem 7

5.1 Conversion Examples

Figure 7 illustrates the conversions of two Dupin cyclide patches into RBBSs
using the proposed algorithm. For the first example (the upper subfigures), we
obtained a standard RBBS having only positive weights. For the second one (the

Fig. 7. Conversion of two cyclide patches into RBBSs. Upper, the result is a standard

RBBS having only positive weights. Lower, the result is a RBBS with positive and

negative weights
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lower subfigures), in which the cyclide patch is delimited by ψ1 = π, we obtained
a RBBS with positive and negative weights. These are positive along curvature
lines with θ constant, and negative along curvature lines with ψ constant.

5.2 Comparison of Conversion Algorithms

To make a significant comparison of the various algorithms for converting Dupin
cyclides to RBBS form (Pratt’s original algorithm, the new variant of the Pratt’s
algorithm and the barycentric algorithm), we have used the following criteria:

– Entire cyclide: whether it is possible or not to convert a whole Dupin cyclide
into a set of RBBSs.

– Number of RBBSs: The minimum number of RBBSs needed to represent a
whole Dupin cyclide.

– Parameter constraints: what are the constraints on parameters θ0, θ1, ψ0

and ψ1?
– Prohibited values: Are there particular prohibited values for parameters θ0,

θ1, ψ0 and ψ1?

Table 1 summarizes this comparison. One can note that to convert a whole
Dupin cyclide we need: Only four RBBSs if the new algorithm is used, nine
RBBSs if the Pratt’s algorithm is used, and six RBBSs if the Pratt’s algorithm
and its variant are combined and used. Figure 8 shows this difference in the
number of resulting RBBSs.

Dupin cyclides are very useful for blending quadric surfaces [8, 13, 14, 15]. To
show conversion of a blending Dupin cyclide we applied the method proposed in
[8] to construct the blending cyclide of the left subfigure of Figure 9 and converted
it to RBBSs by the three conversion algorithms discussed in this paper. We note
here that conversion showed in the middle subfigure can be obtained either by
the new algorithm or by a combination of Pratt’s algorithm and its variant; two
RBBSs are enough to ensure a correct conversion. On the other hand, Pratt’s
algorithm gives conversion showed on the right subfigure. Although in this case,

Table 1. Comparison between Pratt’s algorithm, its variant and the barycentric

algorithm

Pratt’s Variant of Barycentric
algorithm Pratt’s algorithm algorithm

Entire cyclide no yes yes

Number of RBBSs / 9 4

(θ0, θ1) or (ψ0, ψ1)

Geometric constraints no

{ |θ0 − θ1| < π
|ψ0 − ψ1| < π

symmetrical

compared to 0 or π.

Prohibited value π π no
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Fig. 8. Comparison of conversion algorithms. Upper left, the cyclide to be converted.

Upper right, result of the new algorithm: only four RBBSs are necessary. Lower left,

result of the combination of Pratt’s algorithm and its variant, six RBBSs are necessary.

Lower right, result of the variant of Pratt’s algorithm, nine RBBSs are necessary

Fig. 9. Conversion of cylinder/plane blending Dupin cyclide. Left, the blending cyclide.

Middle, conversion into two RBBSs. Right, conversion into three RBBSs

the minimal number of RBBSs is three, the surfaces obtained here have only
positive weights so they lie completely inside their control polyhedron.

Another case where the new algorithm is better than both of others is shown
by Figure 10. The cyclide patch (left subfigure) is the one of Figure 5 where
Pratt’s algorithm and its variant have given incorrect conversions. The new
algorithm exactly reproduces the original cyclide patch (Figure 10 right).

Another advantage of the new algorithm is the possibility of converting a
Dupin cyclide patch delimited by a curvature line corresponding to a parameter
value of π, which is not feasible either with Pratt’s algorithm or its variant. This
is shown in Figure 11 where the cyclide patch to be converted is a blending
surface of a cylinder and a plane. Horizontally, it is delimited, on the cylinder
side by ψ1 = π

2 and on the plane side by ψ0 = π. Neither Pratt’s algorithm
nor its variant can be used to achieve this conversion. Two samples of possible
conversions, using the barycentric algorithm, are given on subfigures 11 middle
and 11 right.
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Fig. 10. Another conversion result. The new algorithm gives exact conversion (right

subfigure), while other algorithms fail (see Figure 5)

Fig. 11. Conversion of cylinder/plane blending Dupin cyclide where neither Pratt’s

algorithm nor its variant can be applied. Left, the blending cyclide. Middle and right,

two examples of possible conversions

5.3 A Complete Case Study

As control points of RBBSs resulting from conversion may be far removed from
the patches themselves, it is often difficult to draw the control polygon on figures
that show these RBBSs. So, in this section we give more details concerning the
conversion of the cyclide patch of Figure 5 left, and the RBBSs given by the
conversion algorithms. Parameters defining the cyclide patch are a = 6, c = 2,
μ = 3, θ0 = 2π

3 , θ1 = 4π
3 , ψ0 = 5π

6 and ψ1 = 3π
2 . Table 2 gives control points and

Table 2. Comparison of control points obtained with Pratt’s algorithm and barycentric

algorithm

[Points;Weights] Pratt’s algorithm barycentric algorithm
[P00; w00] � [(−3.466; 8.206;−2.204); 306.564] [(−3.466; 8.206;−2.204), 1]
[P01; w01] � [(−5.995; 12.852; 5.302);−46.641] [(−5.995; 12.852; 5.302); 0.384]
[P02; w02] � [(−1.667; 4.899; 3.771); 48.000] [(−1.667; 4.899; 3.771); 1]
[P10; w10] � [(−35.166;−0.191;−7.807);−75.713] [(−35.166;−0.422;−7.807); 0.247]
[P11; w11] � [(129.663; 0.682;−42.661);−5.072] [(129.663; 0;−42.661);−0.042]
[P12; w12] � [(−9.667;−0.566; 6.600);−24.000] [(−9.667;−0.117; 6.600); 0.500]
[P20; w20] � [(−3.466;−8.205;−2.204); 306.564] [(−3.466;−8.205;−2.204); 1]
[P21; w21] � [(−5.995;−12.852; 5.302);−46.641] [(−5.995;−12.852; 5.302); 0.384]
[P22; w22] � [(−1.667;−4.899; 3.771); 48.000] [(−1.667;−4.899; 3.771); 1]
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weights of RBBSs of Figure 5 middle and Figure 10 right. This table shows how
computed control points differ from one algorithm to another. A value of 1 is
an exact value, whereas a value of 48.000 is a rounded of value. The only differ-
ence between Pratt’s algorithm and its variant is the fact that negative weights
become positive. On the other hand, weights computed using our algorithm are
smaller than those given by Pratt’s algorithm; moreover, the new algorithm gives
exact values for corner control points, unlike the other algorithms.

6 Conclusion

In this paper, we have have used the symmetry properties of circles and Bern-
stein polynomials to prove seven theorems concerning barycentric properties of
RBBSs. These properties have been employed in a new algorithm for the conver-
sion of Dupin cyclides to RBBSs. Several examples of the use of the algorithm
have been given.

In future it is proposed to extend the algorithm for the conversion of super-
cyclides (affine or projective transformations of Dupin cyclides) to RBBSs.
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Abstract. We consider the problem of defining multi-sided patches in
a system that enables G2 continuity. The technology is based on find-
ing the weighted least squares solution of points on given input curves
where a separate parameter space with control structures determines its
weights. It is a generalization of Shepard’s method to a parameterized
vector solution. The method generates surface patches that satisfy cer-
tain minimal energy conditions. it employs any parametric curve and
points as controls for defining the surface.

1 Introduction

Multi-sided patches have been a commonly researched topic in geometric design.
Because of their facility to match surface patches to the underlying topology of an
object, they can more closely fit the designer’s vision, thus relieving the designer
of the “topology burden,” and allowing him or her to focus on the important,
shape-defining attributes of the object. A good survey of multi-sided patches
with references is found in [5]. More recent developments in multi-sided patches
include recursive subdivision methods adapted to interpolate curves where a
match between the curves and a sequence of edges on the base control mesh
is assumed [4]. Recently [7] and [8] describe a method called T-splines that
subsumes NURBS and Catmull-Clark surfaces, and admits T-junctions, which
can handle many of the topological arrangements that occur in design. Bi-cubic
T-splines are C2 piecewise rational surfaces that are backward compatible with
NURBS surfaces.

We describe a technique that defines multi-sided patches that interpolate
arbitrary parametric curves. Since the patches allow a designer to focus on at-
tribute curves with less concern about the topology we call it attribute based
modelingTM.

2 Fundamental Surface Definition

Given points xi = (xi, yi, zi), the weighted, discrete least squares solution x =
(x, y, z) minimizes∑

i

[(x − xi)2 + (y − yi)2 + (z − zi)2]Wi(x, y, z) (1)

where the solution slews toward the points with larger weights Wi(x, y, z) [1].

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 219–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



220 K. Gao and A. Rockwood
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footprints

u

1
u2
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x1
x2

x =   (u)F

Fig. 1. Map u to x via footprints and attributes

Attribute based modeling starts with a parametric map on IR2 that supplies
the weights to interpolate points and curves in IR3 using Formula 1, as illus-
trated in Fig 1. First, let Ui be simple objects in IR2, e.g. line segments, called
footprints. For any u in IR2, let Pi(u) be a projection onto a unique point ui

of each footprint Ui. For each footprint there is an attribute function fi that
maps from Ui to IR3. We call the fi(Ui) attributes, e.g. the curves in attribute
space. For any parameter u let x = F (u) in IR3 be the weighted least squares
solution for points xi=fi(ui) where the weights are typically given as reciprocal
distances from u to their projections ui. Potential singularity issue is discussed
in Section 6. There are a number of ways to project to footprints and compute
distances between u and the footprints, e.g. [6]. Some are explored later. Dis-
tance to footprint is a significant computation; thus there is strong motivation
for keeping the footprints simple, such as points and line segments. The dis-
tance must also be chosen to satisfy desired continuity conditions. This is also
discussed later.

The critical role that distances play is to make the weight large as u ap-
proaches a footprint; it forces the surface F (u) to approach the corresponding
attribute, and that guarantees interpolation. Thus in Fig 2 as u approaches
u1, the corresponding points of the surface approach x1. Letting u vary yields
the interpolation surface, which is displayed above the parameter space in this
case. The surface mimics the behavior of the attribute curves in the nearby
region.

Formula 1 characterizes the interpolant as a least-squares “minimal energy”
surface with respect to weights in footprint space. This gives it a tight film-like
appearance.
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Fig. 2. Map u to x via footprints and attributes

However, a simpler algebraic form exists than in Formula 1. To see this, let
the attribute functions be fi(ui)=(xi(u), yi(u),zi(u)). From Formula 1 we seek
x = F (u) = (x, y, z) that minimizes

S =
∑

i

‖fi(ui) − F (u)‖2
Wi(u)

=
∑

i

[(xi(u) − x)2 + (yi(u) − y)2 + (zi(u) − z)2]Wi(u)
(2)

with respect to (x, y, z). Without loss of generality consider the partial derivative
of x as follows:

∂S/∂x =
∑

i

[−2(xi(u) − x)Wi(u) + (xi(u) − x)2∂Wi(u)/∂x] (3)

which is equal to ∑
i

[−2(xi(u) − x)Wi(u)] (4)

since ∂Wi(u)/∂x=0. Minimizing Formula 2 by setting Formula 4 to 0 yields∑
i

xi(u)Wi(u) = x
∑

i

Wi(u) (5)
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which implies
x =

∑
i

xi(u)Wi(u)/
∑

i

Wi(u) (6)

In general we obtain

F (u) = (x, y, z) =
∑

i

fi(ui)Wi(u)/
∑

i

Wi(u) =
∑

i

fi(ui)Ŵi(u) (7)

where Ŵi(u) = Wi(u)/
∑

k Wk(u), and k ranges over the number of footprints.
One will recognize Formula 7 as a normalized, linear combination seen in

methods such as Shepard’s formula, rational Bezier forms, NURBS and the
“Wires” method ([3] and [9]). A crucial difference between Formula 7 and Shep-
ard’s formula is that in Formula 7 the attribute functions fi and the weights
Wi are computed in a separate parameter space, i.e. the footprint space, and
the weights are determined by distance to freely definable footprints. The pa-
rameterization avoids the known problems of Shepard’s form, e.g. flat spots at
interpolating points. Hence, unlike Shepard’s method, attribute based modeling
has linear precision, that is, if interpolation points or attribute curves are re-
stricted to a straight line, then the interpolant will be a straight line. This follows
immediately from the convex combination in Formula 7. Furthermore, Shepard’s
method only interpolates points, while Formula 7 also interpolates curves.

The “Wires” method fosters the concept of attribute based modeling, akin in
spirit to our technique. The Wires’ paper has an example of underlying geometry
that maps to curves in space, from which one could get geometry to conform to
the curves. However, it makes no claims of minimal energy and could introduce
unwanted wiggles [9].

3 Adding Derivative Information

The resemblance in form to Shepard’s Formula suggests useful enhancements to
Formula 7. The fi can be replaced by the first few terms of a Taylor series, for
example. Consequently the interpolant passes through the attributes position
and also matches derivatives in the series. Another way to extend Formula 7
that matches tangencies is to infer the partials from a lofted surface

Ri(si, ti) = (1 − si)fi(ti) + sigi(ti) (8)

The parameter si parameterizes the ith loft, where si = di(u), is some “dis-
tance” of u to the ith footprint Ui. The gi(t) are user given parametric curves
that define the boundary of the loft. The parameter ti is the parameter value
of the projection Pi(u) on the ith footprint, and is used to parameterize the
footprint (see Section 5). With si and ti given as functions of u we can give the
variation of Formula 7 that is used for G1 in this paper as

F (u) =
∑

i

Ri(si, ti)Ŵi(u)2 (9)
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(a) Attribute curves
(bold) and loft bound-
ary curves (thin) of
the neck

(b) Subsequent bird

Fig. 3. Seven-patch cartoon bird

Notice that Ŵi(u) is squared to satisfy continuity requirements, which is ex-
plained in the G1 proof that follows.

Fig 3(a) shows both position attributes fi(t) and offset boundary curves
gi(t) that defines the surface of a bird’s neck. The model contains two two-sided
patches for the eye and eyelid, three three-sided patches for the beaks and plume
and two four-sided patches for the head and neck. The number of sides on each
patch matches a natural connection topology of the object being modeled.

Rewrite Formula 9 as

F (u) =
∑

i

[(1 − si)fi(ti) + sigi(ti)]Ŵi(u)2 (10)

and consider the partial derivatives of Formula 10. For u =(u, v) and without
loss of generality, let all following partials be with respect to u:

∂F (u, v) =
∑

i

{[−fi(ti) + gi(ti)]Ŵi(u, v)2

+ [(1 − si)fi(ti) + sigi(ti)]2Ŵi(u, v)∂Ŵi(u, v)}
(11)

We assume that si and ti are affine functions of (u,v), so that their partials
are constant, which can be ignored in the following arguments below. This is
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not a great restriction on the distance and projection calculations in the method
(see Section 5).

It remains to examine ∂Ŵi(u, v). Recall that Wi are reciprocal functions
of the distances si = di(u, v), which are affine functions with respect to both
variables:

Wi(u, v) = 1/di(u, v) (12)

It can be shown by induction that for 1 < k < n + 1 footprints:

∂Ŵi(u, v) =[2
∏
k

dk(u, v)]Pol(d1(u, v), ..., dk(u, v), ∂d1(u, v), ..., ∂dk(u, v))

/[
∑

j

∏
k �=j

dk(u, v)2]2
(13)

where Pol(d1(u, v), ..., dk(u, v), ∂d1(u, v), ..., ∂dk(u, v)) is a multivariate polyno-
mial in the distances and partials. Note that Formula 13 always contains a
multiplicative factor of di(u, v) in the numerator, while the denominator always
contains an additive term without di(u, v). For example, with 4 footprints and
i = 1, we obtain

2d1d2d3d4Pol(d1, d2, d3, d4, d1
′, d2

′, d3
′, d4

′)
(d1

2d2
2d3

2 + d1
2d2

2d4
2 + d1

2d3
2d4

2 + d2
2d3

2d4
2)2

(14)

Formula 13 implies that for (u0, v0) on the ith footprint where di(u0, v0) = 0,
and for k �=i, di(u0, v0) is a finite, non-zero distance. Hence, the denominator is
non-zero and the numerator is zero, so ∂Ŵi(u0, v0) = 0. This yields:

∂F (u0, v0) =
∑

i

[−fi(ti(u0, v0)) + gi(ti(u0, v0))]Ŵi(u0, v0)2 (15)

Formula 15 is the same form as Formula 7 except that the weights are squared.
It is an interpolation form, which means that for any point (u0, v0) on the ith

footprint in Formula 15 becomes

[gi(ti(u0, v0)) − fi(ti(u0, v0))] (16)

which is the tangent of the loft Ri(si, ti) at (u0, v0). That is to say the surface
is tangent to the loft at (u0, v0). This is true for the partial derivatives of both
u and v by symmetry. Therefore we have:

Theorem 1. If F (u) =
∑

iRi(s, t)Ŵi(u)2 are defined with multiple footprints,
where
Ri(s, t) = (1 − s)fi(t) + sgi(t), then

∂F (u0, v0)/∂u = ∂Ri(0, t0)/∂u, ∂F (u0, v0)/∂v = ∂Ri(0, t0)/∂v (17)

for any point (u0, v0) on the footprint and any t0 = t(u0, v0), which is an affine
of u and v.
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(a) Without lofts (b) Add a horizontal loft to the semi-
circular attribute curve

Fig. 4. Five-sided, contour rendered patch

Theorem 1 guarantees that if two patches with the form in Formula 7 share
a common curve fi(t) and have two lofts that share tangency at the common
curve, the surface patches also share common tangency; they are G1 at fi(t).
Fig 4(a) shows a five-sided patch. In Fig 4(b) the same patch is associated with
a horizontally displace lofted surface and blended to give it a fuller appearance.

4 G2 Continuity

The proof of G2 continuity is very similar in form to that of the G1 proof, except
that power of the weights is cubic and the lofts are quadratic. For example one
may use the Bernstein blending functions to define the loft:

Qi(s, t) = (1 − s)2fi(t) + 2(1 − s)sgi(t) + s2hi(t) (18)

We will consider two lofts given as in Formula 18 for each ith footprint,
namely QLi(s, t) and QRi(s, t), such that QLi(0, t)=QRi(0, t)=fi(t). This yields
two surfaces L and R defined as

L(u) =
∑

i

QLi(s, t)Ŵi(u)3 (19)

and
R(u) =

∑
i

QRi(s, t)Ŵi(u)3 (20)

Assume that the lofts are designed so that for any fixed value of t0 the curves
QLi(s, t0) and QRi(s, t0) are G2 continuous at s = 0, i.e. they share the same
curvature at s = 0. Let us consider all values of u that project to the same
t0 on the ith footprint for L(u), that is, the line of points perpendicular to the
footprint at t0. The parameter s is the Euclidean distance of u to the footprint
and is therefore the distance along this perpendicular. Notice again that s = s(u)
is an affine function. We take the directional derivatives of L along s for a fixed
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t0, but since s is affine it is tantamount to a univariate derivative. Using the
blending function from Formula 18 in Formula 19 we get

L′(s, t0) =
∑

i[QLi(s, t0)3Ŵi(s)2Ŵi
′
(s)

+ (−2(1 − s)fi(t0) + (2 − 4s)gi(t0) + 2shi(t0))Ŵi(s)3]
(21)

For s = 0

L′(0, t0) =
∑

i

[QLi(0, t0)3Ŵi(0)2Ŵi
′
(0) + (−2fi(t0) + 2gi(t0))Ŵi(0)3] (22)

By the same steps as in the G1 case in Formula 13 above we obtain

L′(0, t0) =
∑

i

[2gi(t0) − 2fi(t0))Ŵi(0)3] (23)

which is tangent to QL′
i(s, t0). Likewise R′(s) is parallel to QR′

i(s, t0) as s→0.
Hence, if QL′

i(s, t0) is cotangent to QR′
i(s, t0), then R′(s, t0) is cotangent to

L′(s, t0) when s = 0. G1 continuity is assured in the quadratic case for the curve
at t0. Consider now the derivative of Formula 21:

L′′(s, t0) =∑
i

[(2fi(t0) − 4gi(t0) + 2hi(t0))3Ŵi(s)2Ŵi
′
(s)

+ ((1 − s)2fi(t) + 2(1 − s)sgi(t) + s2hi(t))(6Ŵi(s)Ŵi
′
(s) + Ŵi

′′
(s))

+ (2fi(t0) − 4gi(t0) + 2hi(t0))Ŵi(s)3

+ (−2(1 − s)fi(t0) + (2 − 4s)gi(t0) + 2shi(t0))3Ŵi(s)2Ŵi
′
(s)]

(24)

In this case, for s = 0

L′′(0, t0) =
∑

i

[(2fi(t0) − 4gi(t0) + 2hi(t0))3Ŵi(0)2Ŵi
′
(0)

+ (2fi(t0)− 4gi(t0) + 2hi(t0) Ŵi(0)3]
(25)

From Formula 13

L′′(0, t0) =
∑

i

[(2fi(t0) − 4gi(t0) + 2hi(t0))Ŵi(0)3] (26)

Once again we see the familiar blended form of Formula 7, this time blending
second order differences, which can easily be input with the right user interface.
A similar form exists for R′′(0, t0). If L(s, t0) and R(s, t0) are designed to have
equal derivatives up to second order, then Formulae 19 and 20 will meet with
curvature continuity, i.e. together they will form a G2 curve at t0. This allows
application of a theorem of [2]

)
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Theorem 2. Let F and G be Gn surfaces sharing a common G1 curve denoted
by R(t). Suppose that there exists a family of Gn curves Et(s) = E(t, s) so that
each Et is a surface curve of F for s≤0, each Et is a surface curve of G for
s≥0, and Et(0) = R(t) and E′

t(0) is not parallel to R′(t). Then F and G have
a Gn continuous join.

Theorem 2 together with the continuity of the L′′(s, t0) and R′′(s, t0) guar-
antees that the surfaces L and R meet with G2 across the common boundary
curve. We have

Theorem 3. Given

L(u) =
∑

i

QLi(s, t)Ŵi(u)3, R(u) =
∑

i

QRi(s, t)Ŵi(u)3

as in Formulae 19 and 20, in which QLi(s, t) and QRi(s, t) meet with G2 con-
tinuity on the boundary curves of L(u) and R(u), then L(u) and R(u) are G2

continuous.

Finally we consider the mixed partials of Formula 7. First,

∂L(s, t)/∂s =
∑

i

[QLi(s, t)3Ŵi(s)2∂Ŵi(s)/∂s + (−2(1 − s)fi(t0)

+ (2 − 4s)gi(t0) + 2shi(t0))Ŵi(s)3]
(27)

As before at s = 0 it leads to

∂L(0, t)/∂s = (−2fi(t0) + 2gi(t0))Ŵi(s)3 (28)

then
∂2L(0, t)/∂s∂t = (−2f ′

i(t0) + 2g′i(t0))Ŵi(s)3 (29)

The “twist” vector of the left surface is the blend of the twist vector of the
loft. Matching twists between left and right lofts results in matching twists on
the boundary of the surfaces. We have

Theorem 4. Given

L(u) =
∑

i

QLi(s, t)Ŵi(u)3, R(u) =
∑

i

QRi(s, t)Ŵi(u)3

as in Formulae 19 and 20, in which QLi(s, t) and QRi(s, t) meet with twist
continuity on the boundary curves of L(u) and R(u), then L(u) and R(u) are
twist continuous.

Fig 5(a) shows a configuration of 2 through 5-sided patches. Fig 5(b) shows
the isophote rendering of the same configuration. Isophote rendering is sensitive
to G2 and twist continuity and would kink at the boundaries where the surfaces
failed to be G2 or twist continuous.
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(a) Flat rendering (b) Isophote rendering

Fig. 5. Configuration of G2 continuous patches

5 Footprints and Distances

As mentioned in the previous proofs, the distance is assumed to an affine map of
the underlying parameterization. The footprints are configured into a polygon
with the same number of sides as the patch. An interesting problem is to choose
the lengths and angles so as to achieve a ‘fair’ parameterization, but it is outside
the scope of this paper. We have employed regular polygons for the footprint
configuration for all figures in this paper, wnd they work fairly well.

The question is how to determine distance that is an affine map so the previ-
ous theorems hold. Note that Euclidean, i.e. perpendicular, distance from a point

perpendicular sweep

u

v

Fig. 6. Euclidean distance contours (dotted) are affine maps of u and v only in the
perpendicular sweep
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(a) Pentagonal footprints
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(b) Quadrilateral
footprint with a
shared stella point

Fig. 7. Computing stellated distance

to the line segment is not affine map of the u and v parameters, except within
the perpendicular sweep of the footprint, see Fig 6. Once past the endpoints
of the footprint it fails to be affine; it is circular. Therefore it will only work
for triangular and rectangular footprint polygons that contain points within the
perpendicular sweeps of their footprints.

Stellated distance is a method to compute distance for all convex polygonal
footprints that satisfies the affine mapping requirement. It is described as follows:

For each edge, compute its stella point. For example, in Fig 7(a), we have a
pentagonal footprint ABCDE. For edge AB, its stella point is the intersection of
the two line segments EA and BC, which are the two neighboring edges of AB.
Take a point inside the polygon, P, PS forms a line segment which intersects
AB at point T. In some cases, such as in Fig 7(b), two footprints can share the
same stella point, and footprint BC intersects the extension of PS at T. The
Euclidean distance between P and T is the stella distance for a point P to a line
footprint AB.

Since PS and AB intersect within AB, the parameter ti in T=(1-ti)A+tiB
ranges from 0 to 1. It also gives a parameterization to the parametric attribute
curve back in the attribute space.

In the case of a triangle footprint, each edge’s stella point is simply its oppo-
site vertex. Another special case is when the two neighboring edges of a footprint
are parallel. In this case, we simply use the perpendicular distance from point
P to the footprint AB. It is observed that stellated distance method achieves
the affine mapping quality by restricting the Euclidean distance to a footprint
within its perpendicular sweep.

While we are discussing footprints it needs to be pointed out that footprint
spaces can be generalized; they do not have to be restricted to polygons in the
plane. The polygons are useful because of our focus on multi-sided patches. Con-
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u
distance

(a) Footprint space and three
attribute curves (bold)

(b) Morning glory

Fig. 8. Cylindrical footprint space

sider, however, Fig 8, which has a cylindrical footprint space where the footprints
are circles on the cylinder, and distance from a point to the footprint is measured
along the cylinders axis. Three footprints are sufficient to define the morning
glory. Attribute curves are trigonometric functions of the circular footprints.

6 Discussion

Attribute Based Modeling enables a designer to define a model with an economy
of inputs, which implies a notably concise database as shown in Table 1.

Formulae 7, 9, 19 and 20 as linear combinations suggests that for each patch,
the computation is linear to the number of its attributes. This is optimal. As the
distance goes to zero there exists a singularity in Wi(u) (reciprocal of distance)
in the forms, which may be resolved in a couple of ways. First, the distance is
given a lower bound within a tolerable error margin, e.g. pixel resolution. All
artifacts in this paper were handled this way. Second, in cases that require higher

Table 1. Inputs for various models

Figure Patches Curves Max # Curves/Patch Lofts

4 7 21 4 21

7 4 13 5 13

10 2 5 3 2
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precision, e.g. CAD/CAM, the following may be used [9], which is derived from
Formula 7.

F (u) =
∑

i

∏
j �=i

dj(u)fi(ui)/
∑

i

∏
j �=i

dj(u) (30)

where dj(u) = 1/Wj(u). Formula 30 guarantees an accurate computation of the
surface point, but increases the computation to a quadratic time complexity.

For polynomial or rational attribute functions the surfaces defined by For-
mulae 7, 9, 19 and 20 are rational polynomials, although we note that input
functions do not need to be polynomial or rational, only parametric. The arti-
facts in this paper were made with cubic Bezier and B-spline attribute functions,
except Fig 8. With G0 continuity, the attribute function is linear in s and a
third degree polynomial in t. The weights with affine distances, as seen in For-
mula 30, contribute degree n− 1 in the numerator and denominator in s, where
n is the number of footprints. This is squared for G1. Hence we obtain degree
1+2(n−1) = 2n−1 over degree 2n−2 in s and degree 3 in t. The degrees in s of
the two, three, four and five-sided patches with G1 continuity are, respectively,
degrees 3/2, 5/4, 7/6 and 9/8, from which the linearity of computation with
respect to number of footprints is also clear. The degrees in t are all 3.

7 Future

The methodology of this paper spawns a number of interesting research topics.
For instance, the method does not require that footprints and curves be joined;
it is more general than described in this paper. It allows for dangling edges and
points to be used as attributes. This enables more refinement in the interior of
the patches.

The method can also be extended to volume modeling by generalizing foot-
print space to IR3 and allowing surfaces as footprints and attributes.

With the pre-defined boundary information, e.g. curves and slopes, a collec-
tion of patches can be dropped seamlessly onto another surface, enabling design
from pre-existing parts in databases. For example, we imagine a library of noses
that can be dragged onto a gap in a face and dropped in like “Mr. Potato Head.”

Operational techniques must be developed such as texture mapping, surface-
ray and surface-surface intersection, and patch subdivision. The convex combi-
nation as in Formula 7 and the other forms immediately leads to convex hull and
affine invariance properties. We would like to establish a variation diminishing
property, which should follow from the least squares approach.
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Abstract. This paper characterizes when the normals of a spline curve
or spline surface lie in the more easily computed cone of the normals of
the segments of the spline control net.

1 Introduction

Since, for splines, subdivision amounts to averaging, would not the limit normal
of a spline curve or surface be a linear, even convex combination of the normals
of the segments of the spline control net? In this introduction and in Section 2
we present some evidence that supports this conjecture for curves and functions.
Section 3 discusses the case of box-spline surfaces.

Such an investigation is practically useful, since an affirmative answer to
the question would allow substituting a simpler computation of bounds on the
control structure for complex, exact bounds on the corresponding nonlinear curve
or surface. Such bounds play a significant role in curve and surface intersection
algorithms and in efficient or high-quality rendering.

For a planar, polynomial curve segment in B-spline or Bézier form, the cone
spanned by the perpendiculars to the control segments encloses the cone of the
curve normals. This follows from

(i) the coefficients of the hodograph (the derivative of the parametrization)
are the scaled differences of the coefficients of the curve parametrization,

(ii) the hodograph is a convex combination of its coefficients and
(iii) the normal to the curve segment is perpendicular to its hodograph.

In symbols, we consider a planar curve

c(t) :=
∑

i

ci bi(t), ci ∈ R2,

in terms of Bernstein polynomials or B-splines bi(t) of degree d. Then ⊥(x, y) =
(−y, x) is the normal direction n(c, t) of c at t, and we may define

Δi(c) :=

{
d(ci+1 − ci), if i ∈ I := {0, . . . , n− 1}
0, else.
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Fig. 1. The differences of intermediate points generated by de Boor’s algorithm lie in

the cone spanned be the differences Δi(r), i ∈ I

The proof of the assertion is

n(c, t) =⊥(c′(t)) =⊥
(∑

i

Δi(c) bi(t)

)
=
∑

i

⊥(Δi(c)) bi(t)

∈ cone(⊥(Δi(c)))i∈I.

Note that the basic idea generalizes to curves in higher-dimensional spaces and
characterizes the normal hyperplanes perpendicular to the tangent cone spanned
by the differences of the control polygon.

2 Curves and Bivariate Functions

We generalize the earlier argument to rational planar curves of the form

r(t) :=

∑
i

wi ri bi(t)∑
i

wi bi(t)
, ri ∈ R2,

with wi > 0: the cone spanned by the perpendiculars to the control segments
encloses the cone of the curve normals.

Lemma 1. Let n(r, t) be the normal to the rational Bézier curve segment r and
ρ :=

∑
i

ri bi. Then

n(r, t) ∈ cone(⊥(Δi(ρ)))i∈I.

Proof. Both the rational de Casteljau and the de Boor algorithm use only pair-
wise convex combinations to compute intermediate points ρj

i , j = 0, . . . , d, i =
0, . . . , j, when written in non-homogeneous space (see e.g. [1]). For non-negative
weights, the differences of intermediate points lie therefore in the cone spanned
by the differences Δi(ρ), i ∈ I, (Figure 1) and the tangent of r at parameter t is
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Fig. 2. Control points pi, i ∈ I, (the set of all 12 line intersections) defining a degree 4

three-direction box-spline parametrized over the central, shaded triangle. The arrows

indicate two (affinely skewed, box-spline averaging) directions e1 and e2 contributing

to the partial derivatives of the surface piece. Note that, in each case, four of the twelve

differences are zero since they do not contribute to the derivative

the scaled difference ρd−1
1 − ρd−1

0 of the affine intermediate control points [2, 3].
Finally, the normal direction n(r, t) of r at t is perpendicular to the tangent of
r at t. �

Similarly, for a planar C1 subdivision curve generated by a binary subdivision
scheme with weights αi

s′2i =
∑

j

α2i−2jsj ,

s′2i+1 =
∑

j

α2i+1−2jsj ,

whose difference scheme uses only convex combinations ([4]), the cone spanned
by the perpendiculars to the control segments encloses the cone of the curve
normals

n(s, t) ∈ cone(⊥(Δi(s)))i∈I.

This follows from

(i) the divided differences of control points of a refined control polygon lie
in the cone of divided differences of control points of the coarse control
polygon,

(ii) the divided differences converge towards the scaled tangents,
(iii) the normal direction n(s, t) of s at t is perpendicular to the tangent at t.

Let us now consider a (uniform box-)spline in two variables (u1, u2) =: u,

p(u) :=
∑
i∈I

pibi(u)
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with coefficients pi ∈ R and i = (i1, i2) ∈ I ⊂ Z2, a multi-index, and I an ap-
propriate index set (see [5]). One polynomial piece of such a spline is a linear
combination of nodal or box-spline functions bi, i ∈ I, of total degree d. In partic-
ular, we consider the three-direction box spline with directions Ξ := [ 1 1 0 0 1 1

0 0 1 1 1 1 ].
A polynomial piece p is defined by a submesh consisting of all triangles (point-
or edge-) adjacent to a central triangle (see Figure 2). Two derivatives in the
generating directions, without loss of generality, e1 := (1, 0) and e2 := (0, 1), can
be obtained by differencing control points in these directions. We define

Δk,i(p) :=

{
d(pi+ek

− pi), if both i ∈ I and i + ek ∈ I,

0 else

for k = 1, 2. Then the same relation holds as for planar curves.

Lemma 2. The normal of a polynomial piece p of a bivariate box-spline function
with averaging matrix Ξ is in the normal cone spanned by the control facet
normals with vertices pi, i ∈ I.

Proof. By definition, the normal direction is

n(
( u1

u2
p

)
, u) :=

∂
( u1

u2
p

)
∂u1

×
∂
( u1

u2
p

)
∂u2

=
∑

i

( 1
0

Δ1,i(p)

)
bi(u)×

∑
i

( 0
1

Δ2,i(p)

)
bi(u)

=
(

1
0∑

i

Δ1,i(p)bi(u)

)
×
(

0
1∑

i

Δ2,i(p)bi(u)

)
=
∑

i

(−Δ1,i(p)
−Δ2,i(p)

1

)
bi(u)

∈ cone(
(−Δ1,i(p)

−Δ2,i(p)
1

)
)i∈I

= cone(Δ1,i

( u1
u2
p

)
×Δ2,i

( u1
u2
p

)
)i∈I.

The last expressions are the normals of the control facets. �

Here, we picked the three-direction box-spline since the control facets have a
unique normal, as opposed to the control net of a tensor-product spline.

3 Box-Spline Surfaces

The examples of curves in one and functions in two variables suggest that the
cone of normal directions n(p, u), u ∈ U , of a spline surface patch p is in the
cone of the normals of its spline control polyhedron of p. To test this hypothesis,
we consider again the three-direction box splines with direction matrix Ξ :=
[ 1 1 0 0 1 1
0 0 1 1 1 1 ].
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Fig. 3. (left) A three-direction box-spline control net. Only the top two coefficients

have a non-zero z-component. The (x, y) coordinates of all coefficients, except the top

left, are evenly distributed. For simplicity, the top left coefficient is the average of the

top right and (−4, 0, 0)T . (right) Bézier control points (scaled by 24) corresponding to

the tip of the triangular patch near (0, 0, 0)

Lemma 3. The normal of a polynomial piece p of a bivariate parametric box-
spline surface with averaging matrix Ξ is in the normal cone spanned by the
cross products of each difference in the direction e1 with each difference in the
direction e2 of control points pi ∈ R3, i ∈ I.

Proof. Since the cross product results in a polynomial of degree 2d− 2 and the
box-spline functions bi form a non-negative partition of 1, we can bound the
normal by

n(p, u) :=
∂p
∂u1
× ∂p

∂u2
=
∑
i∈I

Δ1,i(p)bi(u)×
∑
j∈I

Δ2,j(p)bj(u)

∈ cone(Δ1,i(p)×Δ2,j(p))i∈I,j∈I.

�

Lemma 3 indicates that a much larger set, the set of cross products of all
edge vectors of the control net in the direction e1 with all edge vectors in the
direction e2, generates a cone that includes the limit normals of the patch. This
raises the question, whether such a larger set is also necessary.

The choice of coefficients in Figure 3, left, shows that it is not enough to just
consider the normals of the control facets.

Lemma 4. The normal of a polynomial piece p of a box-spline surface with
averaging matrix Ξ is in general not in the normal cone spanned by the control
facet normals with vertices pi, i ∈ I.
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Proof. To certify the control net as a counterexample, we use the fact that the
three-direction patch p can alternatively be expressed in terms of Bézier coef-
ficients (see e.g. [6, 7] for explicit formulas). Figure 3, right, shows the Bézier
coefficients near the top point (0, 0, 0) corresponding to 0. From these it is easy
to compute the normal. (Alternatively, we could have used the explicit formula
for normals of Loop subdivision surfaces.) Explicitly, with ”∗” indicating unim-
portant values,

n(p,0) =
(−13

−11
5

)
×
(

10−10
4

)
=
(

6∗∗

)
,

i.e. the normal at the tip of the triangular patch has a nonzero x-component,
while the facet normals lie in the x = 0 plane. �

Note that the counterexample crucially depends on non-functional data.
What is the flaw in the argument that, since subdivision amounts to averaging,
the limit normals are a linear combination of the initial normals? One flaw is
that the normal is bilinear with respect to the action of the subdivision matrices.
Hence, we should not expect to find a linear averaging scheme for the normal.
Indeed the following lemma shows that, in general, no subdivision scheme exists
for the normals.

(
1

−1
−3

)

(
32
0

−4

)

( 16
−16
0

)

Fig. 4. Coefficients (scaled by 16) of the once-refined control net
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Lemma 5. No linear subdivision scheme exists for the normals of the three-
direction box-spline with direction matrix Ξ.

Proof. We perform one subdivision step using the box-spline subdivision rules
(see e.g. [8]) on the data of Figure 3, left, resulting in the control net shown in
Figure 4. Again, we consider the facet normals at the apex of the central triangle.
It has normal direction((

32
0−4

)
−
(

1−1
−3

))
×
((

16−16
0

)
−
(

1−1
−3

))
=
(

31
1−1

)
×
(

15−15
3

)
=
(−12∗∗

)
.

Since the normal direction has a nonzero x-component, it is not in the space
spanned by the facet normals of the original control mesh. �

4 Generalizations

At least one further investigation deserves attention. Since the cross products,
of all edges of the control net of one directional derivative with all edges of
another, forms a cone that contains the normals of the regular part of a Loop
subdivision surface [8], can a similar statement be made for the neighborhood
of extraordinary points of a subdivision surface?

Acknowledgement. This research was support in part by NSF under grants DMI-
0400214 and CCF-0430891.
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Abstract. This paper proposes a new subdivision scheme based on
line geometry. We name the scheme ‘line subdivision’. Line subdivision
scheme acts on the line space, and generates two-dimensional manifolds
contained in the Klein quadric. The two-dimensional manifolds are the
Klein images of line congruences in P 3. So, this new subdivision scheme
generates line congruences at the limit. Here, we define the line subdi-
vision surface as an envelope surface which is made by the line congru-
ence. Then, this paper derives basic properties of the surface. Moreover,
we show that line subdivision contains ordinary subdivision and dual
subdivision.

1 Introduction

Subdivision [1, 2, 3, 4, 5] is a well-known method for geometric design and for
computer graphics, because the subdivision makes smooth surfaces with arbi-
trary topology. A subdivision scheme is defined by subdivision matrices and
a rule of change of connectivity. So, many researchers study the condition of
continuity of subdivision surfaces depending on subdivision matrices [4, 6, 7, 8,
9, 10, 11, 12, 13]. Moreover, multiresolution analysis [14, 15, 16, 17, 18, 19] derived
by subdivision theory is extremely useful on mesh editing.

For example, the most popular subdivisions are the Catmull-Clark subdivi-
sion and the Loop subdivision [2]. These subdivisions are designed for irregular
quadrilateral or triangular meshes. Most of other subdivision methods are also
for triangular or quadrilateral meshes; there are only a few methods for other
types of meshes. Examples are subdivisions on hexangular meshes developed by
Claes [20] and Farin [21]. However, faces generated by these subdivisions are not
‘flat’.

In [22], we derived a new subdivision scheme. It is the dual framework of
an ordinary subdivision based on the principle of duality in projective geometry.
The proposed dual subdivision can generate meshes, composed of non-triangular
‘flat’ faces.

In an ordinary subdivision, we compute new positions of the vertices using old
positions of vertices and matrices called subdivision matrices. On the other hand,
in the dual subdivision, we compute new equations of faces using old equations
of faces and subdivision matrices. Moreover, a mesh which has the subdivision
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Fig. 1. Loop subdivision [16]

connectivity is the dual of a mesh which has the dual subdivision connectivity.
In short, a mesh made by the dual subdivision is the dual mesh of a mesh made
by ordinary subdivision. In this sense, the dual subdivision method can be made
by an ordinary subdivision method. Conversely, an ordinary subdivision method
can be made by the dual subdivision method.

The ordinary subdivision generates vertices, whereas the dual subdivision
generates the equations of faces. Thus, we got subdivisions based on vertices
and faces. Then, our next question is: is it possible to construct a subdivision
scheme based on lines?

In this paper, we answer this question affirmatively. That is, we introduce a
new subdivision scheme called ‘line subdivision’. We define the line subdivision
using line geometry, and we derive properties of line subdivision surfaces. In
particular, we show that the line subdivision includes the ordinary and dual
subdivisions.

2 Ordinary Subdivision

In this section, we review ordinary subdivisions in general.

2.1 Subdivision Matrix

A subdivision scheme is defined by subdivision matrices and a rule of connectiv-
ity change. The subdivision scheme, when it is applied to 2-manifold irregular
meshes, generates smooth surfaces at the limit. Fig. 1 is an example of the Loop
subdivision. In this figure, (a) is an original mesh; subdividing (a), we get (b);
subdividing (b) once more, we get (c); subdividing infinite times, we get the
smooth surface (d). We call (d) the subdivision surface. Here, a face is divided
into four new faces. This is a change of connectivity. In this paper, the change
of connectivity is fixed to this type, but other types of connectivity change can
be discussed similarly.

Next, let us consider how to change the positions of the old vertices, and how
to decide the positions of the new vertices. They are specified by matrices called
‘subdivision matrices’. The subdivision matrices are defined at vertices and they
depend on the degree, say k, of the vertex (the degree is the number of edges
connected to the vertex). For example, Fig. 2 denotes a vertex vj

0 which has five
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Fig. 2. Subdivision matrix

edges. Let vj
1, v

j
2, · · · , vj

5 be the vertices at the other terminal of the five edges.
Then, subdivision matrix S5 is defined as follows:

⎛⎜⎜⎜⎝
vj+1
0

vj+1
1
...

vj+1
5

⎞⎟⎟⎟⎠ = Sj
5

⎛⎜⎜⎜⎝
vj
0

vj
1
...
vj
5

⎞⎟⎟⎟⎠ .

Here, the subdivision matrix Sj
5 is a square matrix. j means j-th step of the

subdivision. The neighbor vertices of a vertex v are called vertices on the 1-disc
of v. The subdivision matrix is generally defined not only on vertices in the 1-
disc, but also on other vertices around. However, we discussed only subdivision
matrices that depend on vertices in the 1-disc. We can discuss other subdivi-
sion matrices similarly. In this paper, we assume that the subdivision matrix is
independent on j. A subdivision scheme of this type is called ‘stationary’.

In this way, subdivision matrix is written for a vertex. However, since a newly
generated vertex is computed by two subdivision matrices at the ends of the edge,
the two subdivision matrices must generate the same location of the vertex. So,
the subdivision matrices have this kind of restriction.
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For example, subdivision matrices Sk (k ≥ 3) for the Loop subdivision are

Sk =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1− kβ β β β β β · · · β
3
8

3
8

1
8 0 0 · · · 0 1

8
3
8

1
8

3
8

1
8 0 0 · · · 0

3
8 0 1

8
3
8

1
8 0 · · · 0

...
. . .

3
8

1
8 0 0 · · · 0 1

8
3
8

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where k is the degree of the associated vertex, and

β =
1
k

(
5
8
−
(

3
8

+
1
4

cos
(

2π

k

))2
)

.

The degree k of a vertex is at least two. A vertex whose degree is two is a
boundary vertex. The degree of a vertex of 2-manifold meshes is at least three.
In this paper, we do not discuss boundaries of meshes. So, we assume that the
degree is at least three.

As seen above, a stationary subdivision scheme is defined by subdivision
matrices Sk (k ≥ 3). Then, by Theorem 2.1 in [9], the limit surface of subdivision
f : |K| → R3 is the following parametric surface:

f [p](y) =
∑

i

viφi(y),

vi ∈ R3, φi(y) ∈ R, y ∈ |K|, p = (v0, v1, · · · ),

where K is a complex, |K| is a topological space, that is, the mesh, i is an index
of a vertex, vi is the position of the i-th vertex, φi(y) is the weight function
with the i-th vertex. Moreover, the weight function φi(y) is dependent only on
the subdivision matrices. If the sum of each row of the subdivision matrix is 1,
vertices at each stage of subdivision is affine combinations of original vertices.
Therefore,

∀y ∈ |K|,
∑

i

φi(y) = 1.

So, weight functions make affine combinations, too. If the combination is not
affine, it is not invariant under the translation of the coordinates systems, and
hence we usually consider only affine combinations. Therefore, in what follows
we assume that the sum of element in each row of the subdivision matrix is equal
to 1.

Here, we denote φ(y) = (φ0(y), φ1(y), · · · ). Then, φ(y) decides a set of rep-
resentable surfaces. Then, the set is spanned by φ(y). So, we call the weight
functions basis functions. The limit surface of the subdivision is a point in such
a functional space.
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3 Dual Subdivision

In [22], we proposed a dual subdivision method. In this section we review it very
briefly.

3.1 Definition of Dual Subdivision

The ordinary subdivision is specified by how the vertices are generated and
located. On the other hand, the dual subdivision, which we will define here, is
specified by how the faces are generated and located.

We assumed that the sum of each row of the subdivision matrix is 1.
Here, let pj be the column vector of vertices at the j-th subdivision step.

Using a subdivision matrix S, pj+1 is written as:

pj+1 = Spj ,

where

pj =

⎛⎜⎝pj
0x pj

0y pj
0z

pj
1x pj

1y pj
1z

...

⎞⎟⎠ .

Therefore, if we denote

f j =

⎛⎜⎝pj
0x pj

0y pj
0z −1

pj
1x pj

1y pj
1z −1

...

⎞⎟⎠ ,

we get

f j+1 = Sf j ,

where the elements of each row of f j are coefficients of the equation pj
ixx+pj

iyy+
pj

izz−1 = 0. Therefore, the equations of planes are subdivided. These equations
are the dual of vertices (pj

ix, pj
iy, pj

iz). So, this subdivision is a dual framework of
ordinary subdivision. Moreover, dual subdivision can be defined by a projective
duality (px, py, pz, pw)↔ pxx + pyy + pzz − pww = 0.

Now, for any triangular mesh M , using the duality, we get a dual mesh. Let
us denote this dual mesh by D(M). For a vertex v and a face f , we denote their
duals by D(v) and D(f), respectively. Therefore, D(v) is a plane and D(f) is a
point in the dual space. Here, if the degree of a vertex v of M is k, then v is the
intersection of faces fi, i = 1, 2, · · · , k, so these vertices D(fi), i = 1, 2, · · · , k is
on the face D(v). So, we get following proposition:

Proposition 1. If the degree of the vertex v of M is k, the face D(v) of D(M)
is a k-gon.
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Fig. 3. The duality between ordinary subdivision and dual subdivision. The upper left

drawing shows a surface which has saddle points. The upper right drawing is the dual

surface. The middle right picture is a triangular mesh made by plotting points on the

upper right surface. The middle left mesh is the dual mesh of the middle right mesh.

We get the lower right mesh by ordinary subdivision for the middle right mesh. On the

other hand, we get the lower left mesh by dual subdivision for the middle left mesh.

Then, the lower left mesh is the dual mesh of the lower right mesh. Dual subdivi-

sion is defined as such. Like this, dual subdivision can represent surfaces which have

saddle points

Here, we define the rule of connectivity change of dual subdivision. The connec-
tivity change of dual subdivision is defined as dual of the connectivity change of
ordinary subdivision. Fig. 3 denotes the definition of dual subdivision. In short,
the mesh made by a dual subdivision in the dual space is the dual mesh of a
mesh made by a corresponding ordinary subdivision in the primal space.

4 Line Geometry

In this section, we introduce some basic properties of line geometry
[23, 24, 25, 26].

Let Pn be the n-dimensional real projective space. For a point p ∈ P 3, let the
homogeneous coordinates of p be (p0, p1, p2, p3). Points with p0 = 0 are called
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ideal points. For two different points p, q ∈ P 3, we can characterize the line
passing through p and q using wedge product as

L = p ∧ q,

where p ∧ q = (l01, l02, l03, l23, l31, l12),lij = piqj − pjqi. The elements of L are
called the Plúcker coordinates, which are homogeneous coordinates of the line.
In fact, let p′ = α0p + β0q, q

′ = α1p + β1q, where αi, βi ∈ R, then

L′ = p′ ∧ q′ = det
(

α0 α1

β0 β1

)
L.

Moreover, lij satisfies an equation, called the Plúcker identity:

l01l23 + l02l31 + l03l12 = 0.

Here, let l = (l01, l02, l03), l̄ = (l23, l31, l12). Thus, L = (l, l̄). Then, the Plúcker
identity is l · l̄ = 0. Now, let L̂ = (l̂, ¯̂l) be another line. The two lines L, L̂ intersect
if and only if 〈L, L̂〉 = l · ¯̂l + l̄ · l̂ = 0. This is because 〈L, L̂〉 is the determinant
of matrix [p, q, p̂, q̂], where p̂ and q̂ are two different points on the line L̂. So, the
Plúcker identity is a special case of this equation, that is, 1

2 〈L,L〉 = 0.

Direction and Moment vector. Now, without loss of generality, we can assume
q = (0, q1, q2, q3), p = (1, p1, p2, p3). Then, L = (q1, q2, q3, (q1, q2, q3)×(p1, p2, p3)).
Here, l = (q1, q2, q3) is the direction vector of L and l̄ = (q1, q2, q3)×(p1, p2, p3) is
called the moment vector of L. The Plúcker identity expresses the orthogonality
of l and l̄.

Klein mapping. The Plúcker coordinates of the line L in P 3 are the point (l, l̄)
in P 5. The point is contained in the hyperquadric M4

2 ⊂ P 5, which is defined by
the Plúcker identity. Conversely, a point in M4

2 corresponds to a unique line in
P 3. So, this mapping γ is bijective. γ is called the Klein mapping, and the point
in M4

2 is called the Klein image of the line in P 3.

Pencil of Lines. Let a be a point and L be a non-incident line in P 3. A pencil
of lines is one-parameter family of lines, whose element is the line spanned by
the point a and an arbitrary point on L. Let p, q be points which span L. Then,
elements of the pencil can be written by

(αp + βq) ∧ a = α(p ∧ a) + β(q ∧ a),

where α, β ∈ R. Here, (p ∧ a), (q ∧ a), α(p ∧ a) + β(q ∧ a) are points in M4
2 . So,

the pencil is one-dimensional subspace contained in M4
2 . Conversely, let X,Y be

points in M4
2 , then X,Y are intersecting lines if and only if the one-dimensional

subspace spanned by X,Y is contained in M4
2 . This is because 〈Z,Z〉 = 0 ⇔

〈X,Y 〉 = 0, where Z = αX + βY .
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Fig. 4. Klein quadric M4
2 [23]. B is a pencil of lines in P 3 and the Klein image Bγ is

a line in M4
2 . Similarly, C is a bundle of lines and Cγ is a two-dimensional subspace.

D is a field of lines and Dγ is a two-dimensional subspace

Bundle and Field of Lines. Let a be a point and A be a non-incident plane in
P 3. The set of lines concurrent in a are called a bundle of lines. Let x, y, z be
different points on A. Then, the element of the bundle can be written by

a ∧ (α0x + α1y + α2z) = α0(a ∧ x) + α1(a ∧ y) + α2(a ∧ z),

where αi ∈ R. So, the bundle of lines is a two-dimensional subspace contained in
M4

2 . The dual of a bundle of lines is a field of lines, where a field of lines means
the set of all lines which are contained in a plane in P 3. Let x, y, z be on the
plane. Cleary, the element of the field can be written by

α0(x ∧ y) + α1(y ∧ z) + α2(z ∧ x).

So, the field of lines is a two-dimensional subspace contained in M4
2 . As is the case

with the pencil of lines, there are no other two-dimensional subspace contained
in M4

2 . Fig. 4 shows a pencil B and a bundle C and a field D.

Ruled Surface

Definition 1. A family R(u) of lines in P 3 is called a ruled surface, if its Klein
image Rγ(u) = γ(R(u)) is a curve in M4

2 . We say that R(u) is Cr-continuous
if Rγ(u) is Cr-continuous. A line of R(u) is called a generator line of the ruled
surface.

Here, let R(u) = a(u)∧b(u), where a(u), b(u) are families of points in P 3. Locally,
∃εi, a(u), b(u), can be obtained by a(u) = R(u) ∩ ε1, b(u) = R(u) ∩ ε2, where εi

are two different planes. Any pair of a(u), b(u) is called a pair of director curves.
Then, Rγ(u) is Cr-continuous if and only if a(u), b(u) are Cr-continuous. Fig. 5
shows examples of ruled surfaces.
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Fig. 5. Ruled surfaces [23]

5 Line Subdivision

A two-parameter family of lines in P 3 is called a line congruence. Klein images
of line congruences are two-dimensional manifolds in M4

2 .
Remember that the ruled surface is defined as the union of one-parameter

family of lines. However, at the same time, we can define the ruled surface as the
envelope surface of the lines. Here, let R(y0) be the tangent line of the envelope
surface at p(y0), then ‘envelope surface of lines R(y)’ is defined as the union of
tangent points p(y0) such that lim||δ||→0 p(y0 + δ) − p(y0) = 0, where p(y0 + δ)
is the tangent point of the line R(y0 + δ) (In the case of ruled surface, y and δ
are one-parameters. On the other hand, in the case of the envelope surface of a
line congruence, y and δ are local two-parameters.). In the case of ruled surface,
any point of a line of R is the tangent point of the envelope surface.

So, similarly, we can consider the envelope surface of a line congruence. Let
E(K) be the envelope surface of the line congruence K. Let L be a point of
a two-dimensional manifold Kγ in M4

2 . We can take a local coordinate system
(y1, y2) on Kγ at L. Let R(y1) be the ruled surface which is a curve in M4

2 ,
whose direction is y1, passing through L. Let R(y1, y2) be the perturbation of
R(y1) in the direction y2. Then, we define E(K) as the envelope of ruled surfaces
R(y1, y2).

In general, even if Kγ is a two-dimensional manifold, E(K) is not necessarily
a two-dimensional manifold.
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5.1 Line Subdivision Surface

In what follows, we consider only stationary subdivisions. Let |Kγ| be a mesh in
P 5, p0

i be vertices of |Kγ|, p0
i be in M4

2 . pj
i = (pj

i0, p
j
i1, p

j
i2, p

j
i3, p

j
i4, p

j
i5). Let pj be

the vector whose row is pj
i , p̄j be the vector whose row is (pj

i1, p
j
i2, p

j
i3, p

j
i4, p

j
i5),

S be a subdivision matrix.
Then, we define a subdivision step as

p̄j+1 = Sp̄j ,

pj+1
i0 = −(pj+1

i1 pj+1
i4 + pj+1

i2 pj+1
i5 )/pj+1

i3 . So, any pj+1
i is in M4

2 . Thus, we can see
that the limit surface of this subdivision scheme is in M4

2 .
Then, the limit surface f [p]γ(y) in M4

2 is written:

f [p]γ(y) =
∑

i

p0
i φi(y),

φi(y) ∈ R, y ∈ |Kγ|, p = (p0
0, p

0
1, · · · ).

Here, y is a local two-parameter (locally, y = (y1, y2)). Let f [p](y) be the line
congruence corresponding to f [p]γ(y). Therefore, we define E(f [p](y)) as the
line subdivision surface.
Degeneration of Line Subdivision Surfaces. Assume the line subdivision surface
E(f [p](y)) is a two-dimensional manifold. We define a point of E(f [p](y)) as
non-degenerate if the tangent line, which is a element of the line congruence
f [p](y), of the point is unique and if a continuous subset of E(f [p](y)) whose
points do not share a tanget line. In short, if different points of f [p]γ(y) have
the same tangent point of E(f [p](y)) or if there exists a continuous subset of
E(f [p](y)) whose point shares a tanget line, then the tangent point is degenerate.
Therefore, the degenerated subset of E(f [p](y)) is a curve, which is a subset of
ruled surface or a ruled surface.
Smoothness of Line Subdivision Surfaces. Let f [p]γ(y0) be a point of f [p]γ(y),
and f [p](y0) be the line corresponding to f [p]γ(y0). Since f [p]γ(y0) is in M4

2 ,
∃(a(y0), b(y0)), f [p](y0) = a(y0) ∧ b(y0), where a(y0), b(y0) are points in P 3.

Let u(y0) be a point of E(f [p](y)). Now, E(f [p](y)) is an envelope surface.
So, there exists a line f [p](y0) such that f [p](y0) is the tangent line at u(y0).
Thus, we can assume that a(y0) = u(y0), b(y) is in a plane A. Then, clearly, the
differentiability class of E(f [p](y)) is equal to that of a(y).

However, we want to know the relation between the differentiability class of
E(f [p](y)) and that of b(y).

Here, we get the following theorem. In this theorem, a is not necessarily the
tangent point of E(f [p](y)).

Theorem 1 (Smoothness of line subdivision surfaces). Assume that the
line subdivision surface E(f [p](y)) is a two-dimensional manifold and non-
degenerate. Then, E(f [p](y)) is tangent plane continuous if a(y), b(y) are C1-
continuous. Additionally assume that the normal of tangent plane of E(f [p](y))
is continuous. Then, E(f [p](y)) is Cr-continuous if and only if a(y), b(y) are
Cr-continuous, that is, f [p]γ(y) is Cr-continuous.
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Proof. Here, ∂1f [p](y) = ∂1a(y)∧b(y)+a(y)∧∂1b(y), where ∂1 is differentiation
on direction y1. Let δ be a perturbation on the direction y1. Now, there exists
a direction y1 such that the tangent line f [p](y0 + δ) at u(y0 + δ) and f [p](y0)
do not span a plane which is vertical to the tangent plane at u(y0). At the limit
||δ|| → 0, ȧ(y0) and f [p](y0) spans the tangent plane at u(y0). So, E(f [p](y)) is
tangent plane continuous if a(y), b(y) are C1-continuous. Moreover, if the normal
of tangent plane of E(f [p](y)) is continuous (see the chapter ‘inflection plane’
in [22]), the differentiability class of E(f [p](y)) is equal to that of a(y), b(y). So,
the differentiability class of E(f [p](y)) is equal to that of f [p]γ(y). ��

As above, the tangent plane at u(y0) depends on f [p](y0) and ȧ(y0). Thus,
the set of the tangent planes of E(f [p](y)) is Cr−1-continuous if and only if
f [p]γ(y) is Cr-continuous.

In this proof, we do not use terms of subdivision. So, for any line congruence
K, theorem 1 holds.

Boundedness of Line Subdivision Surfaces. Let f [p]γ(y) be C1-continuous and
boundaryless, the normal of tangent plane of E(f [p](y)) be continuous. Then,
if E(f [p](y)) is non-degenerate, E(f [p](y)) is boundaryless and a(y), b(y) are
C1-continuous. So, the tangent plane T (y0) of E(f [p](y)) at a(y0) is spanned by
a(y0)∧b(y0) and a(y0)∧(a(y0)+ ȧ(y0)) = a(y0)∧ ȧ(y0). Let l′(y) be the direction
vector of f [p](y).

Then, we get the following theorem.

Theorem 2 (Boundedness of line subdivision surfaces). Assume that
f [p]γ(y) is C1-continuous and boundaryless and E(f [p](y)) is a two-dimensional
manifold and non-degenrate and the normal of tangent plane of E(f [p](y)) is
continuous and ∀y ∈ |Kγ|, l′(y) = (0, 0, 0). Then, E(f [p](y)) is bounded if and
only if any ideal point in P 3 is contained in at least one T (y).

Proof. E(f([p](y)) is C1-continuous from Theorem 1. So, the set of T (y) is C0-
continuous and the set of normals of T (y) is C0-continuous. Now, l′(y) = (0, 0, 0).
So, we can take a(y), b(y) such that a(y) or b(y) is not an ideal point. Thus, T (y)
is not an ideal plane (Ideal planes are spanned by ideal points). Therefore, since
E(f [p](y)) is a boundaryless two-dimensional manifold, if E(f [p](y)) is bounded,
any ideal point in P 3 is contained in at least one T (y). Moreover, since E(f [p](y))
is non-degenerate and C1-continuous, E(f [p](y)) is bounded if any ideal point
in P 3 is contained in at least one T (y). ��

5.2 Structure of Subdivisions

As above, vertices of a mesh in P 5 made by subdivision are in M4
2 . However,

edges and faces of that are not necessarily in M4
2 . So, the lines in P 3 correspond-

ing to the mesh do not necessarily form a mesh in P 3.
So, we consider a condition for the line congruence made by subdivision to

be a mesh in P 3.
Let M be a mesh in P 3 and Mγ be the Klein image of M . Fig. 6 shows the

relation between M and Mγ. Vertices of M can be regarded as bundles. Then,
Klein images of vertices are two-dimensional subspaces (faces of Mγ). Similarly,
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Fig. 6. Mγ is a mesh in M4
2 . The left picture shows a mesh M in P 3. The right picture

shows the corresponding mesh Mγ in M4
2 ⊂ P 5. Mγ consists of bundles and fields.

Bundles corresponds vertices of M . Fields corresponds faces of M . So, the faces which

are the Klein images of vertices and the faces which are that of faces appear alternately.

Dached lines show the relation of M and Mγ

faces of M can be regarded as fields, and hence Klein images of faces of M are
faces of Mγ.

Let Mγj be the j-th mesh made by subdividing Mγ. Now, Mγ is in M4
2 . So,

vertices vik of a face fi of Mγ can be written:

vik = akXi + bkYi + ckZi,

where ak, bk, ck ∈ R, Xi,Yi,Zi is points in M4
2 .

Here, we redefine a subdivision step as

pj+1 = Spj .

(See previous subsection. This is a more natural definition. However, in general,
the linear combination of points in M4

2 is not in M4
2 . If the linear combination

is in M4
2 , lines corresponding to the points intersect in P 3. In the following case,

this definition is equivalent to the previous definition.) Here, Mγ is the original
mesh.

So, we consider linear combinations of the vertices Mγ. If fi0 and fi1 are
bundles, then the linear combination between vi0k and vi1k is in a bundle. This
is clear, because, without loss of generality, we can assume that the bundles
share the non-incident plane A (see the paragraph:Bundle and Field of Lines).
Similarly, If fi2 and fi3 are fields, then the linear combination between vi2k and
vi3k is in a field. This is because, without loss of generality, we can assume that
y, z are on the line which is shared by the two faces corresponding to fi2 and fi3 .

However, if fi4 is a bundle and fi5 is a field, then the linear combination
between vi4k and vi5k is neither a bundle nor a field.

Therefore, if we want Mγj consists of bundles and fields, we must define the
subdivision based on bundles or fields.

Let M j in P 3 be the mesh corresponding to Mγj in M4
2 . Then, Mγ∞ is a

line congruence made by subdivision and M∞ is the line subdivision surface.
Here, we easily find the structure of subdivisions.
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Fig. 7. The structure of subdivisions. If a line subdivision scheme makes a mesh Mγ

in M4
2 which corresponds a mesh M to in P 3 at finite step of subdivision, then the line

subdivision scheme is a ordinary subdivision scheme or a dual subdivision scheme

The line subdivision based on bundles is the ordinary subdivision (here, we
assume that ordinary subdivision generate ‘flat’ faces.). This is clear (Consider
the linear combination of bundles. ‘Bundle’ naturally depends only the point a
in P 3.). Similarly, the line subdivision based on fields is the dual subdivision
(Consider the linear combination of fields. ‘Field’ naturally depends only the
face in P 3.). Fig. 7 shows the structure of subdivisions.

Let T (y0) be the tangent plane of Mγ∞ at p(y0) such that T (y0) is in M4
2 .

Here, we easily see that if T (y0) is the Klein image of a bundle, then γ−1(T (y0))
is a bundle based on the vertex whose tangent line is γ−1(p(y0)), if T (y0) is the
Klein image of a field, then γ−1(T (y0)) is a field based on the tangent plane of
M∞ which contains γ−1(T (y0)).

6 Conclusions

In this paper, we proposed a new subdivision method based on line geometry.
The new subdivision scheme acts on the line space and generates two-dimensional
manifolds in the Klein quadric M4

2 . Two-dimensional manifolds in M4
2 are the

Klein images of line congruences, which are local two-parameter families of lines
in P 3. Then, we defined the line subdivision surface as the envelope surface of
the line congruence.

Moreover, we derived theorems on smoothness and boundedness of the line
subdivision surfaces.

However, since the line subdivision schemes make a mesh in P 5, only whose
vertices are in M4

2 , at finite stage of line subdivision, in general, the line sub-
division surfaces are not meshes. So, we want to know a condition for the line
subdivision surface at finite stage to be a mesh.

In fact, there exists line subdivision schemes which satisfy this condition. Such
line subdivision schemes are the line subdivision schemes based on bundles or



Line Subdivision 253

fields. The line subdivision schemes based on bundles are equivalent to ordinary
subdivision schemes. The line subdivision schemes based on fields are equivalent
to dual subdivision schemes [22].
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Abstract. Voronoi diagrams have several important applications in
science and engineering. While the properties and algorithms for the
ordinary Voronoi diagrams of point sets have been well-known, their
counterparts for a set of spheres have not been sufficiently studied.

In this paper, we present properties and two algorithms for Voronoi
diagrams of 3D spheres based on the Euclidean distance from the surface
of spheres. Starting from a valid initial Voronoi vertex, the edge-tracing
algorithm follows Voronoi edges until the construction is completed. The
region-expansion algorithm constructs the desired diagram by succes-
sively expanding the Voronoi region of each sphere, one after another,
via a series of topology operations, starting from the ordinary Voronoi
diagram for the centres of spheres.

In the worst-case, the edge-tracing algorithm takes O(mn) time, and
the region-expansion algorithm takes O(n3 log n) time, where m and n
are the numbers of edges and spheres, respectively. It should, however,
be noted that the worst-case time complexity for both algorithms reduce
to O(n2) for proteins since the number of immediate neighbor atoms for
an atom is constant. Adapting appropriate filtering techniques to reduce
search space, the expected time complexities can even reduce to linear.

Then, we show how such a Voronoi diagram can be used for solving
various important geometric problems in biological systems by illustrat-
ing two examples: the computation of surfaces defined on a protein, and
the extraction and characterization of interaction interfaces between mul-
tiple proteins.

1 Introduction

Since its introduction in the early 20th century, the Voronoi diagram has been
one of the central topics in computational geometry as well as in other disciplines
in science and engineering. Due to its natural descriptive and manipulative capa-
bility, Voronoi diagrams and their variations have been known by various names
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such as Thiessen polygons [39], medial axis transformations (MAT) [27], sym-
metric axis transformations (SAT) [4, 5], skeletons [25], proximity maps [17],
Dirichlet tessellations, etc.

The ordinary Voronoi diagram for a point set and its construction have been
studied extensively in both two and higher dimensions [33]. However, the con-
struction of the Voronoi diagram for spheres in Euclidean distance metric, often
referred to as an additively weighted Voronoi diagram [33], has not been ex-
plored sufficiently even though the potential impact of this Voronoi diagram on
diverse applications can be significant [1, 15, 30, 36, 40]. For example, the struc-
tural analysis of protein requires an efficient computational tool to analyze the
spatial structure among its atoms [15, 20, 36]. In the design of new materials,
a similar analysis is fundamental as well [29, 31, 38]. However, due to the lack
of appropriate algorithms and stable running codes for the Euclidean Voronoi
diagram of spheres, most applications have instead adapted an ordinary Voronoi
diagram of points, a power diagram [2, 3], or an α-shape [11, 12].

In this paper, we present properties and two algorithms for Voronoi diagrams
of 3D spheres based on the Euclidean distance from the surface. Starting from
a valid initial Voronoi vertex, the edge-tracing algorithm follows Voronoi edges
until the construction is completed. The region-expansion algorithm constructs
the desired diagram by expanding Voronoi regions for one sphere after another
via a series of topology operations, starting from the ordinary Voronoi diagram
for the centres of spheres. In the worst-case, the edge-tracing algorithm takes
O(mn) time, and the region-expansion algorithm takes O(n3 log n) time, where
m and n are the numbers of edges and spheres, respectively. It should be noted,
however, that the worst-case time complexity for both algorithms reduce to
O(n2) for proteins since the number of immediate neighbor atoms for an atom
is constant [16]. Adapting appropriate filtering techniques to reduce the search
space, the expected time complexities can even reduce to linear.

Then, we show how such a Voronoi diagram can be used for solving various
important geometric problems in biological systems by illustrating two exam-
ples: the computation of surfaces defined on a protein, and the extraction and
characterization of interaction interfaces between multiple proteins.

This paper is organized as follows: After reviewing related previous research
in Section 2, we provide the definition and a few geometric properties of the
Euclidean Voronoi diagram for spheres in Section 3. Then two algorithms, the
edge-tracing and the region-expansion algorithms, are presented in Section 4.
To show the powerful use, we illustrate two, among many others, important
biological problems well-solved via the Voronoi diagrams of atoms. Then, we
conclude this paper.

2 Related Works for the Euclidean Voronoi Diagram of
3D Spheres

Unlike other Voronoi diagrams and their variants, few reports are available for
the Voronoi diagram of spheres. Aurenhammer discussed the transformation of



Euclidean Voronoi Diagrams of 3D Spheres 257

the computation of the Euclidean Voronoi diagram of spheres in d-dimensions
to that of the (d + 1)-dimensional power diagram obtained from the convex hull
in (d + 2)-dimension [2].

Will wrote a comprehensive Ph.D. thesis dedicated to the computation of
Voronoi regions in the Euclidean Voronoi diagram of spheres in 3D [42]. In
his Ph.D. thesis, Will showed that the Voronoi region of a sphere has a Θ(n2)
combinatorial complexity and proposed a lower envelope algorithm which takes
O(n2 log n) expected time for a single Voronoi region, where n is the number
of spheres. Will also provided experimental results on various data sets from
biological problems. In this work, he considered a general set of spheres meaning
that there is no constraint on the size distribution of spheres.

Gavrilova, in her Ph.D. thesis, reported several properties of Euclidean
Voronoi diagrams for spheres in arbitrary dimensions, including shapes of the
Voronoi regions, nearest neighbors and empty-sphere properties [13, 14].
Luchnikov et al. proposed a practical idea of tracing edges which is a simple
yet powerful way to obtain the desired diagram [29].

Recently, Kim et al. reported on the details of an edge-tracing algorithm and
its full implementation for constructing the whole Voronoi diagram with dis-
cussions on various applications including the analysis of protein structures [20,
21, 22, 23]. They showed that the whole Voronoi diagram can be constructed
in O(n3) time in the worst-case. Boissonnat and Karavelas reported on an ele-
gant algorithm based on the convex-hull of spheres transformed by inversion [6].
Kim and Kim recently are currently working on another algorithm, the region-
expansion algorithm, for the problem [24].

The combinatorial complexity of the Euclidean Voronoi diagram of spheres
is also important to mention. While the numbers of vertices, edges, and faces
of the Voronoi diagram of general spheres are all O(n2) in the worst-case, the
average numbers for those are all O(n). Halperin even found that the upper
bound of the combinatorial complexity for all of the vertices, edges, and faces
of the Voronoi diagram for atoms in a protein is O(n) in the worst-case [16].
This nice property is due largely to two characteristics of atom distributions
in a protein. According to Pauli’s exclusion principle, an atom cannot contain
another [32]. In addition, the differences in the atom radii are within a constant
since most proteins consist of six different types of atoms, such as H, C, N, O,
P, and S, with the corresponding van der Waals radii of 1.2, 1.7, 1.55, 1.52, 1.8,
and 1.8 Å, respectively [43]. Under these conditions, Halperin showed that the
number of neighboring atoms, which define Voronoi faces, of an atom is linear
in the worst-case.

3 Definitions Related to the Euclidean Voronoi Diagrams
for Spheres

Let S = {s1, s2, · · · , sn} be a set of generators where si is a three dimensional
spherical ball. Hence, si = (ci, ri) where ci = (xi, yi, zi) and ri denote the center
and radius of a ball, respectively. We assume that no ball is completely con-
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(a) (b) (c)

Fig. 1. Fifteen balls with three different radii and a corresponding Voronoi diagram.

Voronoi edges are conics while Voronoi faces are hyperboloids: (a) fifteen generator

balls, (b) the Voronoi region corresponding to the largest ball in the center, and (c)

the Voronoi diagram for an α-helix with 67 atoms

tained inside another ball while other types of intersections between balls are
allowed. Associated with each ball si, there is a corresponding region VRi, called
a Voronoi region for si, where VRi = {p|dist(p, ci)− ri ≤ dist(p, cj)− rj , i = j}.
Then, VD(S)= {VR1, VR2, · · ·, VRn} is called the Euclidean Voronoi diagram
for S. In this paper, the ordinary L2-distance from the surface of balls is used to
define Euclidean Voronoi diagrams.

As in the ordinary Voronoi diagram, the Voronoi regions corresponding to
balls on the boundary of the convex hull of S are unbounded. Other regions are
bounded by Voronoi faces, where a Voronoi face is defined by two neighboring
balls. Note that the geometry of a Voronoi face is always a hyperboloid of two
sheets and a face always lies within only one sheet. Note that the face may
degenerate into a plane when the balls are equi-sized. A Voronoi face intersects
another face to form a Voronoi edge. Voronoi edges are conic and therefore
planar. It can be shown that a Voronoi edge is the spine curve of a Dupin
cyclide for three nearby spheres. When Voronoi edges intersect, a Voronoi vertex
is defined. In this paper, we assume that the degree of a vertex is always four.
Hence, there is a sphere centered at the vertex and simultaneously tangent to four
balls. This tangent sphere is called empty since this sphere does not intersect any
other balls but it is tangent to the four balls. From now on, the uses of Euclidean
and Voronoi will be minimized when it does not cause any misunderstanding.
In this paper, balls are used to denote generators and spheres are used to denote
tangent spheres corresponding to Voronoi vertices. For further details, please
refer to [20–23].

Illustrated in Fig. 1(a) and (b) are fifteen balls with three different radii and
the Voronoi region corresponding to the largest ball in the center. As shown
in this figure, Voronoi edges and faces are curved, and therefore Voronoi re-
gions are not convex in general but are star-shaped with respect to the center of
the corresponding ball. Note that the Voronoi region for the largest ball shares
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fourteen faces with its neighbors. Fig. 1(c) shows the Voronoi diagram of a
subset of protein with 67 atoms, which form an alpha-helix, downloaded from
PDB [35].

4 Algorithms for VD(S)

Before discussing the construction of the topology for VD(S), a discussion on
computational primitives for the geometry aspect of vertices, edges, and faces
is in order. A Voronoi vertex is the center of an empty sphere simultaneously
tangent to four balls. An elegant algorithm to compute such a tangent sphere
in a general dimension is presented by Gavrilova [14]. A Voronoi edge is defined
as the locus of points equi-distant from three nearby balls, and it can be easily
shown that an edge is always a conic curve and can be conveniently represented, if
necessary, in a rational quadratic Bézier form [23]. Two topologically neighboring
balls define a Voronoi face as a locus of points equi-distant from two nearby balls,
and the face is a segment of a hyperboloid of two sheets and its equation can be
easily obtained [15, 23]. Note that the topology of a face can be arbitrary such
as a triangle, rectangle, pentagon, and so on. While a face is connected, a face
may have a number of holes.

The data structure we have designed to store the topology of VD(S) is a
variation of radial data structure [7, 41]. It should be noted that an edge-graph
of VD(S) can be disconnected [23]. Hence, the dual of VD(S) is not necessarily
a valid triangulation like the Delaunay triangulation for the Voronoi diagram of
a point set or the regular triangulation for a power diagram. We call the dual
of VD(S) a quasi-triangulation since it is a valid triangulation except around
the tiny spheres located in-between two larger spheres. The details on the quasi-
triangulation will be discussed later in another paper.

4.1 Edge-Tracing Algorithm

The idea of the edge-tracing algorithm is simple as it constructs Voronoi edges
in the order of a depth-first search. The algorithm first locates a true Voronoi
vertex v0 by computing an empty tangent sphere defined by four appropriate
nearby balls. Given v0, four edges e0, e1, e2, and e3 emanating from v0 can
be easily identified and pushed into a stack called an Edge-stack. Hence, these
edges have v0 as their starting vertices. After popping an edge from the stack,
the algorithm computes the end vertex of the popped edge. Note that the end
vertex can be found by computing an empty sphere tangent to four balls: three
balls which define the popped edge and one of the (n− 3) candidate balls.

If an empty tangent sphere is found, the center of the sphere may become the
end vertex of the popped edge. (Another condition is indeed necessary.) Once the
end vertex of edge is found, it is also possible to define three new edges emanating
from this new vertex. Hence, these new edges starting from the new vertex just
computed are created and pushed into the Edge-stack. By following this process
until the Edge-stack is empty, the computation of the Voronoi diagram of a
connected graph is completed.
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We want to mention here that the edge-tracing algorithm, as described here,
does not find disconnected subgraphs, if they exist. Such cases have to be handled
separately and will not be covered in this paper since it requires a detailed
discussion.

Finding Vertices. Computing an end vertex of a popped edge is equivalent to
finding a ball associated with the end vertex. To find an end vertex, we compute a
tangent sphere from four balls: three balls defining the popped edge and another
ball from the set of balls. After a tangent sphere is computed, its emptiness
should be tested against all the other balls except the four balls tangent to the
sphere. Note the three balls are always correctly determined when an edge is
created.

A näıve solution for this task would take O(n2) time in the worst-case. How-
ever, it can be improved as follows. Given the three surrounding balls for an
edge, we first compute a tangent sphere Ti with an arbitrary ball si from the
(n− 3) candidate balls. Then, we select another candidate ball sj and construct
a tangent sphere Tj with sj and the three surrounding balls. If sj intersects Ti,
the current Ti is replaced by Tj . If not, we choose one of Ti or Tj whichever is
closer to the start vertex of the edge in terms of angular distance. Since all balls
in the candidate set are scanned only once, this process runs in O(n) time in the
worst-case.

To find a closer tangent sphere, we define an angular distance as an angle
defined by the start vertex, the center of one of the surrounding balls, and the
center of a tangent sphere. Then, the smaller this angle is, the closer the tangent
sphere is to the start vertex.

Stitching Vertices and Edges Together. Suppose that a new vertex for an
edge is computed. If the vertex has not been previously computed, then we can
safely use the new vertex to complete the edge. However, if it has already been
computed, meaning that the tangent sphere to those four balls has been han-
dled before, we have to ignore this new vertex and use the previously computed
(and existing somewhere) vertex to complete the definition of the edge. This is
because the existing vertex already has partially determined associated topolog-
ical information. Note that an existing vertex implies that a loop (or cycle) is
identified in the edge-graph of VD(S). Hence, it is necessary to check if the new
vertex has already been computed or not.

For the efficient search for an existing vertex, we have devised a table of
computed vertices called a Vertex Index Dictionary (VIDIC). An entry in the
dictionary consists of indices of four balls defining a vertex and a pointer to the
vertex. However, care should be taken since there can be some pairs of entries
in the VIDIC where each pair has an identical combination of spheres.

The size of the dictionary, in the worst-case, is two times the number of
Voronoi vertices and therefore O(n2). However, if an appropriate ordering among
the entries is used, a binary search scheme can be applied to take O(log n) time
in the worst case. We believe that a tighter worst-case bound of the size of
the VIDIC can be much less than O(n2). In addition, we want to mention that
hashing, taking O(1) time on the average, is applicable for searching in VIDIC.
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Algorithm. The proposed edge-tracing algorithm can be summarized as
follows:

Algorithm Edge-Tracing
Input: A set S of 3D balls
Output: VD(S)

1. Find an initial vertex v0, generate four edges emanating from v0, then
push the edges into an Edge-stack.

2. Pop an edge from the Edge-stack and find the empty tangent sphere
closest to the start vertex of the edge to define the end vertex.

3. Check if the vertex found in Step 2 is valid or not using VIDIC.
4. If the vertex exists in VIDIC, finalize the popped edge appropriately. If

the vertex is new, generate three more edges and push them into the
Edge-stack.

5. Repeat Step 2 through 4 until the Edge-stack is empty.

Time Complexity. Given an initial Voronoi vertex to start with, the edge-
tracing algorithm runs in O(mn) time in the worst-case, where m is the number
of edges and n is the number of balls. The algorithm iterates O(m) times since it
traces all edges once for each edge. For each edge, it is necessary to do O(n) scans
through all candidate balls once to compute a valid tangent sphere. Detection of
the existence of a vertex in VIDIC can be done in O(log n) time in the worst-case
by a binary search. Even though m is O(n2) in the worst-case, it is O(n) on the
average.

While the numbers of vertices, edges, and faces are O(n2) in the worst-case,
the average numbers of vertices, edges, and faces are O(n). In addition, if we de-
vise an appropriate geometric hashing, an end vertex can be found in only O(1)
time on the average when balls are accordingly distributed like protein data.
Note that the preprocessing for an appropriate bucket takes O(n) time in the
worst case. Searching for a vertex in VIDIC can also be reduced to O(1) time on
the average if an appropriate hashing is used. Hence, we claim that the average
time complexity for the whole procedure can be as low as O(n). For this claim to
be mathematically justified, however, the distribution of balls should be carefully
examined. For further details about the algorithm, readers are referred to [23].

4.2 Region-Expansion Algorithm

The region-expansion algorithm extends its precursor in 2D [18, 19] and adapts
the idea of discrete event simulation [28]. Let VD(P ) be an ordinary Voronoi
diagram of the centers of balls. The algorithm constructs VD(S) by expanding
Voronoi regions for one ball after another via a series of edge-flips, starting from
VD(P ). After choosing a point generator ci, which is the center of a spherical
ball si, and the corresponding Voronoi region VRi, the algorithm continuously
enlarges the point generator ci to the ball si. Then, the corresponding region VRi

expands according to the enlargement of the corresponding generator. Repeating
the process for all generators constructs a correct Voronoi diagram if the topology
is consistently and correctly maintained.
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The vertices on the boundary of an expanding region are called on-vertices,
and the others are called off-vertices. The edges on the expanding region are
called on-edges, and the edges which have no on-vertex are called off-edges.
The other edges are called radiating-edges and categorized into two groups: i)
edges with an on-vertex and an off-vertex, and ii) edges with on-vertices at both
ends. Similarly, faces are also grouped into three categories: on-faces, off-faces,
and radiating-faces. A vertex sphere is the sphere simultaneously tangent to the
generators defining a Voronoi vertex, and therefore its center is identical to the
vertex.

Expanding Regions and Topology Changes. Given VD(P ), ci is associated
with a polyhedral Voronoi region VRi. Given a set of balls S = {s1, s2, · · · , sn},
we can view each ball si as it grows, or expands, to its full size starting from a
point ci at its center. While a ball expands, the corresponding region expands as
well. If we can keep the topology, and the geometry as well if necessary, among
vertices, edges, faces, and regions for the intermediate Voronoi diagram correctly
and consistently during the expansion, the complete VD(S) can be computed
by repeating the process generator by generator to the last generator. We call
this process the region-expansion.

Suppose that we choose a generator si, which will expand to its full size
starting from a point at its center ci. Then, si and the corresponding region VRi

are called expanding while the other generators and regions are called staying.
It is obvious that expanding a generator always increases the volume of the
corresponding region. Note that each on-vertex, during the region-expansion,
moves away from the initial region by following the radiating-edge associated
with the vertex. Similarly, each on-edge moves away from the initial region by
following a corresponding radiating-face.

Certain topological changes occur at some point in time during the expanding
process. For example, suppose that an on-vertex moving along a radiating-edge
meets a corresponding off-vertex of the edge. Then, the radiating-edge degen-
erates to a point and disappears afterwards. We call this an event for such a
situation causing changes in the combinatorial structure.

It can be shown that considerations about the vertices and edges are suffi-
cient to identify all events for topological changes during the expansion process.
Furthermore, it is only necessary to consider edges on radiating-faces since on-
vertices and on-edges are always restricted to movement along radiating-edges
and radiating-faces, respectively. Note also that on-vertices and on-edges do not
have any associated state. Since an event denotes a change in the topology struc-
ture due to moving on-vertices or on-edges, the next event always occurs at edges
on the radiating-faces.

Note, however, that any edge except an on-edge can be associated with events
if the size of the expanding generator is sufficiently large. Since generator balls
have prescribed sizes, only a subset of the events can be realized.

Event Types. Events can be classified based on the conditions of an edge: i)
end-event, ii) mid-event, and iii) split-event. An end-event denotes the case when
an edge disappears at the end of the edge during the process of region expansion.
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(a) (b)

(c) (d)

Fig. 2. Handling events: (a) one-end-event, (b) two-end-event, (c) mid-event, and (d)

split-event

A mid-event denotes the case that an edge disappears in the middle of the edge.
This case occurs when both end vertices (which are on-vertices) of an edge move
toward the interior of the edge to meet at a point during the region expansion.
Similarly, a split-event denotes the case that a new vertex is created at a point
in the middle of an edge so that the edge splits into two edges.

Handling Events. Depending on the events, different actions should be per-
formed to keep the topology correct and consistent. Fig. 2 shows examples of
events. In the figure, white and black solid circles denote off-vertices and on-
vertices, respectively. An end-event is further classified into two groups: one-
end-event and two-end-event. In the case of an one-end-event in Fig. 2(a), the
event edge (a radiating-edge), shown as the thick edge, disappears after the
event is properly processed and three new on-edges are born to form a new on-
face. In addition, both end vertices of the event edge disappear, and three new
on-vertices for the new on-face are born.

A two-end-event, Fig. 2(b), removes two radiating-edges having the same type
of events simultaneously and incident to an identical off-vertex. Then, the face, a
radiating-face, which is bounded by both event edges also disappears. Therefore,
three edges constituting the face disappear as well, but a new on-edge is born.
Checking whether the end-event for an edge is indeed one-end-event or two-end-
event can be done simply by looking at the event type of the next edge in an
event queue Q.

Shown in Fig. 2(c) is the case of a mid-event. In the figure, e3 denotes the edge
with a mid-event and e4 denotes an on-edge defining and bounding a radiating-
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face f1 with e3. When this event is processed, the radiating-face f1 disappears,
and two on-faces f2 and f3 are merged into one on-face f . Therefore, two edges
e′1 and e′′1 are merged into one edge e1. The edges e′2 and e′′2 are similarly handled.
Therefore, this event removes one on-face and two on-edges from the topology
under construction.

A split-event differs from the others as follows. As shown in Fig. 2(d), the
event edge es does not disappear but is divided into two edges e′s and e′′s . After
processing the current split-event, e′s and e′′s become the new radiating edges.
Then, the future event types of e′s and e′′s are tested. Similarly, the corresponding
on-edge e5 is divided into two edges e′5 and e′′5 .

In the case of a split-event, two new on-vertices, and two new on-edges are
born as shown in Fig. 2(d). In addition, a new on-face f bounded by two new
on-edges is also born. Therefore, processing a split-event creates two faces (one
on-face and one radiating-face) and two on-vertices. The cardinality change for
edges is, however, a little different from the previous events. After this event is
appropriately handled, three on-edges and two radiating-edges are created, but
one off-edge which is the current event edge is removed.

It is interesting to observe that the handlers (a) and (b) are dual to each
other, and likewise (c) and (d). Each event is associated with an event time that
the event may occur. The details of this region-expansion algorithm will be soon
available [24].

Algorithm. The region-expansion algorithm for a single Voronoi region can be
described as follows.

Algorithm Expand Region of si

Input: A set S of 3D balls
Output: A Voronoi region for a 3D ball si

1. Find all edges defining radiating-faces and insert them into a set E.
2. For each edge e ∈ E \Eon, determine its event type and time te. If te < ri,

insert e into an event queue Q.
3. Pop an edge from Q and check its event type. If the event type is an end-

event, determine if it is an one-end-event or two-end-event by checking
the next edge in Q.

4. Perform appropriate actions for the detected event. After the treatment,
find new edges bounding new radiating-faces and insert them into another
edge set E∗. Perform Step 2 for all edges in E∗.

5. Repeat Step 3 and 4 until Q is empty.

Time Complexity. The computation necessary to expand a Voronoi region,
starting from a center point to a complete ball, takes O(n2 log n) time in the
worst-case since there can be O(n2) number of edges and sorting is necessary
according to the event time of each edge. Therefore, the whole Voronoi diagram
can be constructed by the region-expansion algorithm in O(n3 log n) time in
the worst-case. We believe, however, that there should be a tighter bound for
the worst-case time complexity and the expected time complexity can be much
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lower. We want to mention that reducing the size of all generators by the small-
est generator at the very beginning enables the desired Voronoi diagram to be
computed much faster. However, the computation reduction is a constant factor.

5 Applications of VD(S) in Biological Problems

To demonstrate the applicability of VD(S), we show how two important biology
problems, among many others, in proteins can be solved efficiently via VD(S).
Proteins consist of atoms. Given the atomic structures of molecules, analyzing
their inherent spatial properties and interactions between molecules is impor-
tant for understanding their biological functions. For example, the interaction
between a protein and a small molecule is the basis of designing new drugs.

5.1 Computation of Molecular Surfaces

A protein is usually modelled as a set of hard spheres in order to represent atoms
in a space-filling model where their radii are the van der Waals radii [10, 26].
Given such a model, there are usually two kinds of surfaces involved: a solvent
accessible surface(SAS) and a molecular surface(MS). A SAS, first defined by
Lee and Richards [26], is the set of centers of a spherical probe rolling around the
protein. A probe is used for the computational convenience of a small molecule
which interacts with the protein.

A MS, also known as a Connolly surface [8, 9], consists of the most inward
points on the probe toward the interior of a protein when the probe is in contact
with two or more atoms in the protein [8, 10, 37]. It is well-known that atoms
located at the boundary of a protein determine the function of the protein [8, 9].
Hence, knowledge of a molecular surface is important in the study of protein
functions since the surface has a direct relation with other atoms.

The molecular surface consists of two groups: a solvent contact surface(SCS)
and a reentrant surface(RS). A SCS consists of points on the van der Waals
atoms which are touchable by a probe. A RS is defined as points on the inward
part of the surface of a probe, where the probe is in contact with atoms [37].
An RS, known as a blending surface in CAGD community, consists of two types
of blending surface patches: rolling blending and link blending. These blending
surface patches can be computed by rolling a spherical probe in every possible
direction while keeping tangential contact with the atoms.

An efficient data structure for the proximity among atoms has to be accord-
ingly devised for the efficient computation of the above-mentioned surfaces since
queries about nearby atoms has to be correctly and efficiently answered. Pre-
vious studies have mainly used either an ordinary Voronoi diagram of center
points of atoms [34, 37], a power diagram of atoms [3], or an α-hull [12].

Considering the fact that atoms constituting a protein have different sizes,
the topology constructs in previous studies only provide close approximations
to VD(S). Since a VD(S) is uniquely defined regardless of the probe size, the
blending as well as the offsetting operations using different probes can be done
with a uniquely defined VD(S).
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(a) (b) (c) (d)

Fig. 3. Molecular surfaces for a subset of protein downloaded from PDB. (a) the

molecule model, (b) the molecular surface using a probe with radius 1.4Å, (c) the

radius is 4Å and (d) the radius is 8Å

Shown in Fig. 3(a) is a subset of protein data downloaded from PDB [35]
which forms an α-helix. In the model, there are 41 C’s, 14 N’s, and 12 O’s.
Fig. 3(b), (c) and (d) show the molecular surfaces defined by different probes
with radii of 1.4Å, 4Å, and 8Å, respectively. Note that all molecular surfaces
are computed from the identical Euclidean Voronoi diagram of the model in
Fig. 3(a).

5.2 Analyzing Interaction Interfaces

A protein is a macromolecule consisting of the permutation of 20 different kinds
of amino acids. Amino acids are linearly connected to one another via peptide
bonds to form chains. When a protein consists of two chains, it is called a dimer
as shown in Fig. 4(a). Shown in Fig. 4(b) and (c) are examples of a trimer
(three chains) and a tetramer (four chains), respectively. Since interaction among
chains is critical for protein functions, understanding the interaction is getting
more important and the geometric properties of the interactions are getting more
attention.

The interaction interface IIF is defined in this paper as follows. Let A =
{a1, a2, . . . , am}, B = {b1, b2, . . . , bn} be two chains in a protein, where ai and bj

are atoms with appropriate centers and radii. The interaction interface between
two chains A and B is defined as IIF∞(A,B) = {p | dist(p, A) = dist(p, B)},
where dist(p, A) denotes the minimum Euclidean distance from p to the surfaces
of all van der Waals atoms in the set A. Then, IIF∞(A,B) is a subset of Voronoi
faces in VD(A

⋃
B). Hence, IIF∞(A,B) can be easily located by simply checking

each Voronoi face with its generating atom types. Note that IIF∞(A,B) expands
to infinity.

The infinite Voronoi faces in IIF∞(A,B) are biologically less significant
since proteins, as well as IIF∞(A,B), are usually hydrated. Hence, we define a
trimmed interaction interface IIF (A,B) against a probe of a water molecule.
Fig. 5(a) and (b) illustrate the van der Waals atoms of a dimer 1bh8 downloaded
from PDB and the corresponding IIF (A,B), respectively.
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(a) (b) (c)

Fig. 4. Protein examples: (a) a dimer, (b) a trimer, and (c) a tetramer

(a) (b) (c)

Fig. 5. A dimer (PDB ID: 1bh8): (a) van der Waals model of 1bh8, (b) IIF (A, B),

and (c) the corresponding BS(A, B)

To analyze the topology and geometry of an interaction interface, we define
a base surface BS(A, B) which is defined as a smooth surface fitted through
the trimming curve of IIF (A,B) with a certain minimality condition. Fig. 5(c)
shows the base surface BS(A,B) of IIF (A,B) in Fig. 5(b).

Once an interface and its corresponding base surface are obtained, various
analyses can be done on the interaction behavior between chains in the protein.
Fig. 6 shows an example an analysis of interaction interfaces from a topological
point of view. Fig. 6(a) and (b) show that an interface may be disconnected,
and Fig. 6(c) illustrates that an interface may even have a genus of one or more.
Our experience shows that there are proteins with even stranger topological
structures.

Once the IIF is computed, several other quantitative measures can be defined
to characterize dimers. Shown in Fig. 7 is an example of the geometry analysis
of the interaction interface which shows the distribution of areas of trimmed
interaction interfaces IIF ’s for 3,561 dimers available in PDB. Note that the unit
is Å2. As shown in the figure, 1,353 dimers have areas between 1,000 and 2,000
Å2. Only 40 dimers have areas larger than 5,000 Å2. Similarly, the base surface
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(a) (b) (c)

Fig. 6. Types of base surfaces: (a) base surface with two patches (PDB ID: 1aos), (b)

base surface with three patches (PDB ID: 1hlk), and (c) base surface with tunnel (PDB

ID: 1aoj)

Fig. 7. The distribution of IIF ’s for 3,561 dimers in PDB

area BS can be computed. The ratio between BS and IIF can give information
about the geometric complexity of the interaction between two separate groups
of atoms in a protein. The distribution of distances of vertices in IIF from BS
is also another measure of the interaction.

6 Conclusions

In this paper, we have presented properties and two algorithms for the Voronoi
diagram of 3D spheres based on the Euclidean distance from the surface of
spheres. Starting from a valid initial Voronoi vertex, the edge-tracing algorithm
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follows Voronoi edges until the construction is completed. On the other hand,
the region-expansion algorithm constructs the desired diagram by expanding
Voronoi regions for one sphere after another via a series of topology operations,
starting from the ordinary Voronoi diagram for the centres of the spheres. In
the worst-case, the edge-tracing algorithm takes O(mn) time, and the region-
expansion algorithm takes O(n3 log n) time, where m and n are the numbers of
edges and spheres, respectively.

We have also shown how such a Voronoi diagram can be used for solving
various important geometric problems in biological systems by illustrating two
examples: the computation of surfaces defined on a protein, and the extraction
and characterization of interaction interfaces between multiple proteins.

While the presented Voronoi diagram provides precise results compared to
the other topological constructs such as a power diagram or an α-hull, further
research issues need to be addressed. For example, the robustness and the speed
of construction of the diagram require further study.

However, we want to emphasize that the Euclidean Voronoi diagram of
spheres in 3D has enormous applications for various disciplines in science and
engineering. The Voronoi diagram will, we believe, provide new opportunities
and challenges for geometers.
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The Importance of Polynomial Reproduction
in Piecewise-Uniform Subdivision
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Abstract. We survey a number of related methods, which have been
published by the author and collaborators, in the field of subdivision
schemes for curves and surfaces. The theory presented in these works
relies mainly on the notion of polynomial reproduction, i.e. the abil-
ity of a scheme to reproduce all polynomials up to a certain degree as
limit functions. We demonstrate that the study of polynomial reproduc-
tion is central to smoothness analysis and to approximation. In partic-
ular, we show how to exploit polynomial reproduction in the context
of piecewise-uniform stationary subdivision. The applications include
boundary treatments for subdivision surfaces, interpolation of curves by
surfaces, subdivision stencils around extraordinary vertices (construction
of C2 schemes), as well as schemes that involve different kinds of grids
(triangular / quadrilateral).

1 Introduction

A subdivision scheme works by applying a refinement operator to given control
points, repeatedly. The control points at increasing refinement levels converge
to a function called the limit function. If the refinement rule is the same for all
levels, this is a stationary subdivision scheme.

Subdivision schemes are especially useful for representing smooth surfaces,
because they can operate over meshes of arbitrary topology, in contrast to para-
metric surface representations, which are limited to shapes homeomorphic to a
subset of the plane.

Typically, a subdivision scheme consists of a small number of simple refine-
ment rules. The meshes at increasing refinement levels have a regular structure,
with the exception of so-called extraordinary vertices. In the regular areas of
the mesh, the surface is governed by a uniform subdivision scheme. The special
rules that apply in the vicinity of the extraordinary vertices are chosen with the
purpose of maximizing the smoothness of the limit surfaces there.

The mathematical study of any system of surface representations investigates
the smoothness of the resulting surfaces, as well as their approximation proper-
ties, i.e. the ability to efficiently reproduce a given shape, with desired accuracy.
In the case of uniform subdivision, the notion of polynomial reproduction comes
up as a key property, both in the conditions for good approximation properties,
and in the conditions for smoothness.
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It is known that any uniform subdivision scheme which generates Cm limit
functions, is always capable of generating all of the polynomials up to degree m
as limit functions [1]. Also, if a scheme generates all of the polynomials up to
degree m, then it has approximation order m+1 (this term is explained in § 2.4,
in the context of uniform subdivision).

This paper introduces piecewise-uniform subdivision schemes, which are sub-
division schemes that apply different refinement rules at different regions of the
mesh. These include boundary treatments, rules near extraordinary vertices, and
subdivision rules along special curves on the surface. Our approach for construct-
ing and for analyzing such schemes is built around the property of polynomial
reproduction.

We start by a study of the polynomial reproduction properties of uniform
subdivision. We ask, for a given uniform subdivision scheme, what polynomials
can be generated as limit functions of that scheme, and how to calculate the
initial control points that produce these polynomials in the limit. In our notation,
we have a subdivision operator S, and we want to calculate an operator Q that
maps polynomials up to degree m to sets of control points, with the property
S∞Qf = f, ∀f ∈ πm. Given a polynomial f , Qf are the control points that
produce f as in limit.

For interpolatory schemes, the operator Q is simply a restriction to the integer
grid. Non-trivial formulae, such as Qf(i) = f(i)− 1

6f ′′(i), arise in the context of
non-interpolatory schemes (see [2]).

Once the operator Q is identified for the uniform parts of our subdivision
scheme, we use it in order to extend our scheme to the boundaries between
regions and to extraordinary points.

The key theorem in the paper states, that for stationary subdivision schemes S,

S∞Q = id ⇐⇒ SQ = Qσ, (1)

over the space of polynomials up to degree m, where σ is the dilation oper-
ator σf = f

( ·
2

)
. This result was first presented in [3] for the case of uniform

subdivision. In [2] the result was extended to stationary non-uniform subdivision.
The significance of (1), is that it reduces the equation S∞Q = id, which is a

complicated equation to solve, if S is the unknown, to the equation SQ = Qσ,
which is linear in S. This enables us to construct new subdivision schemes, in
which the weights are calculated by solving small systems of linear equations
that arise from the requirement SQ = Qσ.

We also use the operator Q in a method of approximation called quasi-
interpolation. We show that for any uniform subdivision scheme S we can calcu-
late Q and then extend it to operate on non-polynomial functions. This extension
of Q is, in fact, an approximation scheme, i.e. a method of selecting control points
such that limit function approximates a desired function.

The introduction of the operator Q in [2] serves as the basis for the work of
Levin and Levin in [4], in which a new smoothness analysis tool is introduced.
The general setting which is introduced there, called quasi-uniform subdivision,
stands for a subdivision scheme which is uniform everywhere except for the
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neighborhood of an extraordinary line. This is a situations that appears natu-
rally in piecewise-uniform subdivision schemes. In particular, when subdividing a
mesh which consists of both triangles and quadrilaterals, the subdivision scheme
near the boundary between triangles and quadrilaterals is quasi-uniform [5, 6].
We demonstrate our method by constructing a C2 bivariate tri-quad scheme.
Recently, Hakenberg [7] used the same methodology to construct a volumetric
subdivision scheme over unstructured three-dimensional meshes that consist of
cubes, triangular prisms, tetrahedra and octahedra. The limit surfaces of this
scheme are C2-continuous almost everywhere, and they reproduce all trivariate
quadratic polynomials.

The above methodology, together with the analysis tool of quasi-uniform
subdivision was used by Zulti et al. [8] in the construction of a subdivision scheme
that generates C2-continuous limit functions around an extraordinary vertex.
In the setting of piecewise-uniform subdivision, defined over a parameterized
grid, the requirement for reproduction of quadratic polynomials (which is a key
property for C2 continuity), is reduced to a finite system of linear equations,
which can always be solved by large enough stencils. This is in contrast to
the standard setting of subdivision, in which quadratic reproduction over the
characteristic map seems to be especially difficult [9, 10, 11].

Similar methods were used in [3] for the construction and analysis of sub-
division schemes that satisfy transfinite boundary conditions. Such schemes are
given as input a set of control points and a function that describes the boundary
conditions. By extending the identity (1) to this context, one can reduce the
requirement of polynomial reproduction into a set of linear equations in which
the unknowns are the subdivision weights. It is shown in [3] that if a scheme of
this type reproduces polynomials up to degree m, then the Cm continuity of its
limit function for any Cm boundary condition, follows from the Cm continuity of
the limit function for zero boundary conditions. This powerful theorem enables
to construct subdivision schemes for interpolation of curves by surfaces [12], for
hole filling [13], and for other applications [3].

The paper is structured as follows. Section 2, taken from [2] with the proofs
omitted, introduces polynomial reproduction in the context of uniform subdivi-
sion. Section 3, also taken from [2], introduces non-uniform stationary subdivi-
sion, and studies polynomial reproduction in that context. Section 4 summarizes
the smoothness analysis method originally published in [4], including the C2 tri-
quad scheme. In section 5 we describe the construction of a C2 subdivision
scheme around an extraordinary vertex, originally published in [8]. Section 6
is an introduction to the theory of subdivision schemes that satisfy transfinite
boundary conditions, originally presented in [3]. In particular, we demonstrate
a modification of Catmull-Clark for satisfying C1 boundary conditions.

2 Uniform Subdivision

In this section we use results from the theory of stationary subdivision and the
theory of shift-invariant spaces. We introduce the operator Q, that leads to quasi-
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interpolation and to a condition for polynomial generation. This was originally
presented in [3].

The study of the operator Q for uniform subdivision becomes useful when
we proceed to construct piecewise-uniform subdivision schemes with prescribed
approximation orders, as demonstrated in § 3.5.

2.1 Notations

Let l = l(ZZs) denote the collection of all sequences P : ZZs → IR. We refer to P ∈
l as a set of control points. Let C = C(IRs) denote the space of continuous real
functions on IRs. Similarly, Cm stands for the spaces of m-times differentiable
functions over IRs whose m-th order derivatives are continuous.

We use the standard multi-index notations for ZZs, j = (j1, . . . , js) ∈ ZZs,
j ≥ 0 if j1, . . . , js ≥ 0, |j| = j1 + . . . + js, xj = xj1

1 · . . . · xjs
s . For j ≥ 0 we use

j! = j1! · . . . · js!, Dj = ∂|j|
∂j1x1···∂jsxs

. The entries of a multi-index sequence P ∈ l

are denoted by P (j), for j ∈ ZZs.
The following notations are used for arithmetic operations on subsets of IRs:

Let X,Y ⊂ IRs, z ∈ IRs and α ∈ IR. Then

X + Y = {x + y | x ∈ X, y ∈ Y } ,

X + z = {x + z | x ∈ X} ,

αX = {αx | x ∈ X} ,

For k ≥ 0, the space of polynomials of degree at most k over IRs, is denoted by
πk = πk(IRs). Its restriction to the integer grid is denoted by πk(ZZs).

Throughout the paper, we use the maximum norm in IRs,

‖x‖ = max
i=1,...,s

|xi| , ∀x ∈ IRs.

We denote by σ the dilation operator on C, which appears naturally in the
context of stationary subdivision,

σf = f
( ·

2

)
, f ∈ C.

Uniform Subdivision Schemes
A uniform subdivision operator is a linear operator S : l→ l which is defined by
a finitely supported mask a ∈ l through

(SP )(α) =
∑

β∈ZZs

a(α− 2β)P (β), ∀α ∈ ZZs. (2)

The repeated application of S to a given set of control points P , {SnP}n=0,...,∞,
is called a stationary subdivision scheme.

A subdivision scheme S is termed uniformly convergent, if for every P ∈ l,
there exists F ∈ C (called the limit function) such that

lim
n→∞

∥∥SnP − F
(
2−n·)∥∥∞,ZZs∩2nD

= 0, (3)
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for any open and bounded domain D ⊂ IRs. The introduction of the bounded
domain D here is needed if we do not want to exclude unbounded sequences of
control points and unbounded limit functions. In this paper we are specifically
interested in the case where the limit function is a polynomial, and therefore,
not bounded. We denote the limit function F , by S∞P .

S is called an interpolatory subdivision scheme, if SP (2α) = P (α) ∀α ∈ ZZs.
We say that S belongs to the class Cm if S is uniformly convergent, and

S∞P ∈ Cm for every P ∈ l. For the smoothness analysis of uniform subdivision
schemes the reader is referred to [1, 14]. For a uniformly convergent S we define
the S-refinable function Φ = S∞δ, where δ ∈ l is the sequence which is 1 at the
origin and zero anywhere else. The limit function S∞P can be expressed as a
sum of integer translates of Φ

S∞P =
∑

α∈ZZs

P (α)Φ(· − α). (4)

2.2 The Operator Q

In this section we discuss the known fact, that uniform subdivision schemes,
under certain conditions, can generate polynomials as their limit functions. Our
goal in the following lemmas is to establish the logical relation (1).

It is shown in [1], theorem 8.4 (see also [15]) that if S ∈ Cm and the integer
translates of Φ are linearly independent, then the space πm(ZZs) is invariant
under S. For many uniform subdivision schemes S, the space πm(ZZs) is invariant
under S even though S does not belong to Cm. Cavaretta et al. ([1], chapter 6)
formulate conditions on the mask a that can be used to find the maximal m
such that πm(ZZs) is invariant under S (If the integer shifts of Φ are linearly
independent, this amounts to simple algebraic conditions on a, by corollary 6.3
and theorem 6.3 in [1]). In the following results we study the mapping S :
πm(ZZs)→ πm(ZZs).

Lemma 1 (Proven in [2]). If S maps πm(ZZs) to itself, and S is convergent,
then S∞ maps πm(ZZs) to πm(IRs), and the leading coefficients of S∞p are the
same as those of p, for any p ∈ πm(ZZs).

In the following, we show that S is similar to σ on πm(ZZs). The similarity
operator Q is then shown to be the inverse of S∞ on πm. A similar result also
appeared in the context of wavelet theory in [16] (Lemma 3.2.3).

Lemma 2 (Proven in [2]). If S∞ is a 1-1 map from πm(ZZs) to πm(IRs), then
the restriction of S to πm(ZZs) is similar to the dilation operator,

SQ = Qσ, on πm(IRs), (5)

and the similarity operator Q : πm(IRs) → πm(ZZs) is the inverse of S∞ on
πm(IRs). Moreover, the leading coefficients of Qf are the same as those of f , for
all f ∈ πm(IRs).
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Note that the lemma only requires that S∞ is 1-1 over πm(ZZs) and not for all
sequences of control points. Since this is a finite-dimensional space, this property
is not difficult to check. In particular, it holds for any scheme S which satisfies
the conditions of Lemma (1).

Lemma 3. If Q : πm(IRs)→ πm(ZZs) satisfies

SQ = Qσ, on πm(IRs),

and the leading coefficients of Qf are the leading coefficients of f for all f ∈
πm(IRs), then S∞Q|πm(IRs) = id, namely

S∞Qf = f, ∀f ∈ πm(IRs).

By Lemmas 2 and 3:

Corollary 1. If S is convergent, and Q : πm(IRs)→ πm(ZZs) preserves leading
coefficients then

S∞Q = id ⇐⇒ SQ = Qσ,

both identities restricted to πm(IRs).

The significance of Corollary (1) is the reduction of the property S∞Q = id,
which is the formal notation for polynomial generation, to the relation SQ =
Qσ, in which S appears as a linear term. This is useful for constructing new
subdivision schemes, in which case S is the unknown. It enables us to derive the
weights of S from the solution of a system of linear equations.

2.3 Polynomial Eigenvectors of S

From the relation SQ = Qσ, over the polynomials of degree up to m, we can
easily derive the most significant eigenvectors of the operator S. These are the
eigenvectors that produce polynomials in the limit. For k = (k1, . . . , ks) ∈ ZZs

+,
we take the monomial

f(x) = xk, x ∈ IRs.

Then it follows that

SQf = Qσf = Q2−|k|f = 2−|k|Qf.

Hence, Qf is an eigenvector of S with the eigenvalue 2−|k|. Moreover, we know
that Qf is a polynomial of degree |k|, provided that Q preserves leading coeffi-
cients.

We also know the limit function that corresponds to this eigenvector. It is
simply the monomial xk, because

S∞Qf = f.

For example, when S is the well-known cubic B-spline subdivision scheme, its
corresponding Q operator is

Qf(i) = f(i)− 1
6f ′′(i), ∀i ∈ ZZs, f ∈ π3(IR). (6)
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This is shown in detail in [2]. We can immediately write down the four eigen-
vectors of S with eigenvalues 1, 1

2 , 1
4 , 1

8 . These are:

Q(1) = (1) = (. . . , 1, 1, 1, 1, 1, . . .)
Q(x) = (x) = (. . . ,−2,−1, 0, 1, 2, . . .)

Q(x2) = (x2 − 1
3 ) = (. . . , 3 2

3 , 2
3 ,− 1

3 , 2
3 , 3 2

3 , . . .)

Q(x3) = (x3 − x) = (. . . ,−7, 0, 0, 0, 7, . . .),

using the notation (f) = f |ZZs .

2.4 Quasi-Interpolation

The operator Q, introduced in section § 2.2 is defined as an operator from
πm(IRs) to πm(ZZs). In this section, we show how Q can be extended to an
operator from C(IRs) to l(ZZs) which is local and bounded (in the sense of
Lemma (5)). We then use Q to define a quasi-interpolation operator, and we
prove an approximation order result.

We assume that for a given convergent subdivision scheme S, we have that
S∞Qf = f for all f ∈ πm(IRs). Since S∞ is shift invariant over πm, it follows
that Q is shift invariant as well. The following lemma uses this fact to show that
Q can be represented as a sum of differential operators, when viewing Q as an
operator on the space of polynomials up to degree m. For the proofs for the
following lemmas, the reader is referred to [2].

Lemma 4. Q can be expressed in the form

Q =
∑
|i|≤r

aiD
i

∣∣∣∣∣∣
ZZs

,

taking functions in πm(IRs) to sequences in πm(ZZs).

Lemma 5 (An extension of Q). Q can be extended to a shift invariant op-
erator Q : C(IRs) → l(ZZs) which is bounded and local, namely, there exists an
open and bounded domain A ∈ IRs and c > 0 such that

|Qf(α)| ≤ c‖f‖∞,α+A, ∀α ∈ ZZs, ∀f ∈ C(IRs).

As an example for such an extension, we can extend Q, originally defined only
for cubics, by (6), to all continuous functions, by

Qf(i) = 4
3f(i)− 1

6f(i− 1)− 1
6f(i + 1), ∀i ∈ ZZs, f ∈ C(IR). (7)

The expressions in (6) and (7) coincide when f is a cubic polynomial.
Using the extension of Q to C(IRs), we can approximate any continuous

function f by S∞Qf . This method is known as quasi-interpolation. The following
theorem can also be derived as a particular case from the general theory of PSI
spaces, and quasi-interpolation (see e.g. [17, 18]).
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Theorem 1 (Quasi-interpolation). Let S denote a uniformly convergent sub-
division scheme, and let Q : C(IRs)→ l(ZZs) be a local and bounded operator (in
the sense of lemma 5), such that

S∞Qp = p, p ∈ πm(IRs).

Then there exists C > 0 such that

‖S∞Qf − f‖∞ ≤ C ‖f‖m+1 ,

for every f ∈ Cm+1(IRs) with ‖f‖m+1 < ∞, where ‖f‖m+1 denotes the supre-
mum of the partial derivatives of f of order m + 1.

Approximation Order
This leads to an estimate of the decay of approximation error, when considering
finer and finer approximations of a given function f , using the quasi-interpolation
operator S∞Q. The way we refine the approximation, is to apply it to the di-
lated version of f , σf . We then dilate the approximation back in order to com-
pare it to the original function f . Therefore, we study the approximation error
σ−nS∞Qσnf − f . From theorem 1 we get∥∥σ−nS∞Qσnf − f

∥∥
∞ = ‖S∞Qσnf − σnf‖∞ ≤ C ‖σnf‖m+1

= 2−n(m+1)C ‖f‖m+1 .

Due to the coefficient 2−n(m+1) in the error estimate, we say that this quasi-
interpolation scheme has an order of approximation m + 1.

3 Non-uniform Subdivision

In § 2 we restricted ourselves to subdivision schemes that are stationary and
uniform. Namely, the same subdivision mask is applied everywhere on the integer
grid and at every level of refinement. They were also defined as operators on the
integer grid, l(ZZs), which is uniformly distributed over the space IRs.

In this section, we extend the results of § 2 to schemes that are stationary but
non-uniform. The scheme is still stationary in the sense that a single operator
S operates at every level of refinement. However, S is no longer restricted to
the form (2). It can no longer be captured by a single mask a that operates
everywhere. Also, S doesn’t necessarily operate on the integer grid ZZs. The grid
itself can be non-uniform.

The theoretical results developed in this section describe the relationships
between S and the operator Q that are necessary and sufficient for establishing
the polynomial generation properties of a subdivision scheme. The practical pur-
pose for this analysis is to introduce a method for constructing new non-uniform
subdivision schemes with high approximation orders. Due to the constructive
nature of our approach, we do not deal with the question of the existence of Q
for given S.
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In § 3.1 we extend the notations of stationary subdivision to the non-uniform
case. In § 3.2 we discuss the kinds of schemes for which this theory is applicable.
In sections 3.3–3.4 we extend the results of § 2 to the non-uniform case. In
§ 3.5 we demonstrate the construction of a non-uniform scheme with maximal
approximation order. This is a new univariate scheme which is interpolatory on
the negative side of the real line, and non-interpolatory on the positive side. We
show how the relation (1) is used as the basis for constructing the scheme.

3.1 Notations

The integer grid, that was used for defining uniform subdivision, is replaced here
by a set of points X ⊂ IRs. A set of control points is a sequence of values on
X, P ∈ l(X). The subdivision operator S is a linear operator S : l(X)→ l(X).
A stationary subdivision scheme is defined as the repeated application of S to
given control points P ∈ l(X).

We say that S is uniformly convergent, if for every P ∈ l(X), there exists
F ∈ C(IRs) (called the limit function) such that

lim
n→∞

∥∥SnP − F
(
2−n·)∥∥∞,X∩2nD

= 0, (8)

for any open and bounded domain D ⊂ IRs. We denote S∞P = F . We also
require, as part of the definition of uniform convergence, that S∞P is non-zero for
some P . We restrict our attention to grids X such that 2X ⊂ X. This enables us
to define interpolatory subdivision schemes S, as schemes where SP (2x) = P (x)
for all x ∈ X, and for all P ∈ l(X). We also require that the dilations of X are
dense in IRs, namely

∞⋃
n=0

2−nX = IRs.

This guarantees that if the limit function (8) exists, it is unique.
In contrast to uniform subdivision, S∞P can no longer be expressed as a sum

of integer translates of one compactly supported refinable basis function, as in
(4). However, we are still interested in the notion of locality of the subdivision
scheme. We say that S is local with support Ω ⊂ IRs, or that S∞ is supported
on Ω, if for all x ∈ IRs, and for all P ∈ l(X),

P |(x+Ω)∩X = 0⇒ S∞P (x) = 0. (9)

3.2 Kinds of Non-uniform Schemes

A non-uniform scheme can be defined on a non-uniform grid X. Several examples
of non-uniform grids in IR1 and in IR2 are shown in Fig. 1. They all satisfy the
relation 2X ⊂ X, and 2−nX converges to a set which is dense in IR1 and IR2

respectively. A particular extension of the four-point scheme to a semi-uniform
grid such as in Fig. 1(a) was analyzed in [3]. Subdivision schemes for the grid
in Fig. 1(b) have not yet been studied. The tri-quad grid in Fig. 1(c) is relevant
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Fig. 1. Non-uniform grids. (a) Different grid spacing from both sides of the origin. (b)
Higher density near the origin. (c) A grid that combines quadrilaterals on one side of
the axis with triangles on the other. (d) A k-regular grid. The only vertex that has
valency other than 6 is at the origin

to applications in which we subdivide meshes that consist of both triangles and
quadrilaterals. A grid such as the k-regular grid in Fig. 1(d) appears naturally
around extraordinary vertices in subdivision meshes.

A subdivision scheme defined on a uniform grid may also be non-uniform,
if it operates differently on different areas of the grid. A class of univariate
schemes operating differently on either side of the origin was analyzed in [15].
In the bivariate case, such non-uniformity is used in crease-rules for subdivi-
sion surfaces (see e.g. [19, 20]). These are similar to boundary rules that op-
erate near boundaries of meshes [21]. The setting where the grid is uniform,
but the rules change near the boundary is the one used in combined subdivi-
sion schemes, [22, 13, 12, 3], which are subdivision schemes that satisfy boundary
conditions.

The kinds of non-uniformity that we consider in this paper do not include
schemes that have no regular structure in them, such as the univariate schemes
described in [23, 24], that can add samples not only at the middle of intervals,
and operate differently at each refinement level.
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3.3 The Operator Q

In this section we show that (1) is valid in the non-uniform case, under certain
assumptions. The lemmas are proven in [2].

We observe a significant difference between the uniform and the non-uniform
case, as far as polynomial generation is concerned. In both cases, we ask how to
choose the control points so that we get a polynomial in the limit. The answer
comes in the form of an operator Q, because S∞Q is the identity on a subspace
of polynomials. But, in the uniform case, in order to get a polynomial in the
limit, we had to take control points that lie on a polynomial, whereas in the
non-uniform case this is no longer true.

The operator Q is no longer an operator from πm(IRs) to πm(X), and we
consider a more general

Q : πm(IRs)→ l(X).

However, we will still need a notion parallel to preservation of leading coefficients,
which is one of the conditions of Lemma 3. We say that Q : πm(IRs) → l(X)
preserves leading coefficients, if

f ∈ πk(IRs)⇒ |Qf(x)− f(x)| = o(‖x‖k), as ‖x‖ → ∞, (10)

for all k ≤ m.
The following propositions establish (1) in the non-uniform case.

Lemma 6. Let S : l(X)→ l(X) be a convergent subdivision operator. If S∞ is
an injection, namely, S∞P = 0⇒ P = 0, and Q : πm(IRs)→ l(X) is such that

S∞Qf = f, ∀f ∈ πm(IRs), (11)

then
SQf = Qσf, ∀f ∈ πm(IRs). (12)

Lemma 7. Let S : l(X) → l(X) be a convergent subdivision operator, and let
Q denote a linear operator Q : πm(IRs)→ l(X). If

SQf = Qσf, ∀f ∈ πm(IRs), (13)

and Q preserves leading coefficients, in the sense of (10), then

S∞Qf = f, ∀f ∈ πm(IRs), (14)

Corollary 2. If S is convergent, S∞ is an injection, and Q : πm(IRs) → l(X)
preserves leading coefficients in the sense of (10), then

S∞Q = id ⇐⇒ SQ = Qσ,

both identities restricted to πm(IRs).

The observations in § 2.3 are also easily extended to the non-uniform case.
Provided that Q satisfies SQ = Qσ over the polynomials up to degree m, then
Qf is an eigenvector of S with eigenvalue 2−|k|, if f is the monomial f(x) = xk,
for |k| ≤ m. The difference from the uniform case is, that now the values of the
eigenvector Qf do not necessarily lie on a polynomial. The corresponding limit
function is still a polynomial, however, because S∞Qf = f .
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3.4 Quasi-Interpolation

In § 2.4 we have shown that if Q : πm(IRs)→ πm(ZZs) satisfies

S∞Qf = f, ∀f ∈ πm(IRs),

then there is a bounded and local extension to Q as an operator Q : C(IRs) →
l(ZZs), and this extension is used in an approximation scheme that has approx-
imation order m + 1 (Theorem 1).

For the extension of Q to non-polynomial functions in § 2.4, we used the
fact that Q was shift-invariant. In the non-uniform case, Q is not necessarily
shift-invariant. Therefore, we will not describe how Q can be extended. Instead,
we will assume here that Q can be extended to an operator Q : C(IRs)→ l(X),
which is bounded and local, in the sense that there exists an open and bounded
domain A ∈ IRs and c > 0 such that

|Qf(α)| ≤ c‖f‖∞,α+A, ∀α ∈ X,∀f ∈ C(IRs). (15)

Theorem 1 extends easily to the non-uniform case, with a similar proof, pro-
vided that we assume that S∞ is local and bounded, in the following sense: We
say that S is local, if (9) is satisfied with a support Ω which is bounded. We
require, in addition, that there exists c > 0 such that

|S∞P (x)| ≤ c ‖P‖(x+Ω)∩X , ∀P ∈ l(X), ∀x ∈ IRs.

In the uniform case, this bound on S∞P follows easily from the convergence of
S. In the non-uniform case, this is not necessarily true. However, since this in
itself is a fundamental property that is desirable to have in S, it doesn’t add any
new restrictions.

The approximation order m + 1 for the function values, and m + 1 − |j| for
derivatives of order j, follows easily, just as in the uniform case.

3.5 Example

In this section, we use the above theory to construct a non-uniform univari-
ate scheme, that is interpolatory on the left side of the real line, and non-
interpolatory on the right side.

The four point interpolatory scheme [25] is a family of interpolatory schemes,
given by the mask a = [−w, 0, 1

2 + w, 1, 1
2 + w, 0,−w], supported on {−3, . . . , 3},

where w is a tension parameter. It is shown in [14] (see also [25]) that the limit
function Φ belongs to C1 when w is in the range 0 < w < −1+

√
5

8 . Moreover,
when w is in this range, Φ has Hölder continuous first derivatives, of order 1− ε,
for all 0 < ε < 1. In this section we restrict our attention to the case w = 1

16
where the four-point scheme reproduces cubic polynomials (see also [26]). Since
the scheme is interpolatory, the corresponding operator Q is the identity.

We now proceed to combine the four-point scheme with the cubic B-spline
scheme. Using the notations of § 3.1, the grid X is the set of integers X = ZZ, and
our goal is to construct S : l(ZZ) → l(ZZ) that generates all cubic polynomials
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π3(IR), such that it is interpolatory on one half and non-interpolatory on the
other half of the real line.

From Corollary 2 we know that it is sufficient to show that for some Q :
π3(IR)→ l(ZZ),

SQ = Qσ. (16)

So, in order to generate S we also need to determine the appropriate Q. Clearly,
there is no unique way to satisfy this equation. We will look for the scheme S
that differs from the cubic B-spline scheme or from the four-point scheme at the
minimal number of points, and whose support is minimal.

With these guidelines, we first decide on Q, and then solve the equation for S.
We define Q : π3(IR)→ l(ZZ) as follows:

Qf(i) =
{

f(i) i ≤ 0
f(i)− 1

6f ′′(i) i > 0 , ∀f ∈ π3(IR), ∀i ∈ ZZ.

The left side of Q is the identity, which coincides with the Q operator for the in-
terpolatory four-point scheme. The right side of Q coincides with the Q operator
for the cubic B-spline scheme (see [2]).

For given P ∈ l(ZZ) we define SP (i) for i = 3, 4, . . . by the cubic B-spline
scheme, and for i = 0,−2,−3,−4, . . . by the four point scheme with tension
parameter w = 1

16 . It is then easy to see that SQf(i) = Qσf(i) for all cubics f
and for i ∈ ZZ except for i = −1, 1, 2. We now need to define SP (−1), SP (1)
and SP (2) for arbitrary P , such that S satisfies (16).

We look for subdivision rules near the origin that have as small support as
possible. The weights of the stencils will be determined by the linear equation
(16). We look for S of the form:

SP (−1) = a0P (−2) + a1P (−1) + a2P (0) + a3P (1)
SP (1) = b0P (−1) + b1P (0) + b2P (1) + b3P (2) (17)
SP (2) = c0P (−1) + c1P (0) + c2P (1) + c3P (2)

The four variables a0,. . . ,a3 are determined by the condition SQf(−1) =
Qσf(−1), ∀f ∈ π3(IR). By substituting in f , the monomials up to degree 3,
we get four equations:

1 : a0 + a1 + a2 + a3 = 1

x : −2a0 − a1 + a3 = − 1
2

x2 : 4a0 + a1 + 2
3a3 = 1

4

x3 : −8a0 − a1 = − 1
8

Similarly, from the conditions SQf(1) = Qσf(1) and SQf(2) = Qσf(2) for all
cubics f , we get the following equations for the rest of the subdivision mask:
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1 : b0 + b1 + b2 + b3 = 1 c0 + c1 + c2 + c3 = 1

x : −b0 + b2 + 2b3 = 1
2 −c0 + c2 + 2c3 = 1

x2 : b0 + 2
3b2 + 11

3 b3 = 1
6 c0 + 2

3c2 + 11
3 b3 = 11

12

x3 : −b0 + 6b3 = 0 −c0 + 6c3 = 3
4

All of these systems have unique solutions, given by a = (− 3
64 , 1

2 , 41
64 ,− 3

32 ),
b = (− 3

37 , 24
37 , 33

74 ,− 1
74 ), c = (− 3

148 , 6
37 , 109

148 , 9
74 ). The rules (17), together with the

four-point scheme on the left and the cubic B-spline scheme on the right, form
the new scheme S. All of stencils used in S are depicted in Fig. 2.

Fig. 2. A non-uniform subdivision scheme combining the four-point scheme on the left
side of the real line with the cubic B-spline scheme on the right side. (a) The stencil
for SP (−1). (b) The stencil for SP (1). (c) The stencil for SP (2). (d-e) The regular
four-point and cubic B-spline stencils

We can easily show that the limit functions of S are C1-continuous. Clearly,
they are C1-continuous away from the origin, because both cubic B-splines and
the limit function of the four-point scheme are C1-continuous. For the smooth-
ness analysis near the origin it is sufficient to show that the 5*5 local subdi-
vision matrix mapping P (−2), . . . , P (2) to SP (−2), . . . , SP (2) has eigenvalues
1, 1

2 , λ1, λ2, λ3, with |λi| < 1
2 . In fact, we found that λ1 = 1

4 , λ2 = 57
296 =

0.1926 . . ., λ3 = 1
8 .
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4 Analysis of Quasi-Uniform Subdivision

A quasi-uniform bivariate scheme consists of different uniform rules on each side
of the y-axis, far enough from the axis, some different rules near the y-axis,
and is uniform in the y-direction. This is the case in the triangular-quadrilateral
setting, which we describe in the following. We demonstrate how to construct a
scheme over the tri-quad grid, which generates all quadratic polynomials, and
how to analyze its smoothness. In particular, we establish its C2-continuity.

The method of construction is the same as we used in the univariate case
in § 3.5, namely, we fix Q, and then solve the linear equation SQ = Qσ (from
Corollary 2), in which the unknowns are the subdivision weights.

For the smoothness analysis, we use a special procedure, first published in [4],
which requires to estimate the joint spectral radius of two matrices. In particular,
the polynomial reproduction property plays an important role in the smoothness
analysis procedure (see § 4.2). The proof of correctness of the smoothness analysis
procedure can be found in [4].

4.1 The Tri-quad Scheme – Construction

Considering the tri-quad grid in Figure 3, we would like to define a quasi-uniform
scheme over this grid, which coincides with the tensor product cubic B-spline
scheme, or the Catmull-Clark scheme [27], on the right half plane, and the C2

quartic three-directional box-spline scheme, or the Loop scheme [28], on the left
half plane. The masks of these schemes are depicted in Figure 4.

The goal is to define special rules on the y-axis and near it so that overall the
scheme will be C2, i.e., as smooth as the right and left schemes. These special
rules are constructed together with an operator Q, which also requires a special
definition near the y-axis, so that the condition SQ = Qσ holds for π2 over the
entire plane. The operator Q away from the y-axis is derived from the right and
left uniform schemes, using the method of [2]:

Qf = Q+f = f − 1
6
fxx − 1

6
fyy , x ≥ 0 ,

Fig. 3. The tri-quad grid
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Qf = Q−f = f − 1
6
fxx − 1

8
fyy , x < 0 .

Given this choice of Q, the special subdivision rules near the y-axis are defined by
requiring the SQ = Qσ over π2(IR2). The equations coming out of this equation
are solvable, but not uniquely. The challenge is to find a scheme of the smallest
possible support which fulfills the equations. A scheme with positive weights
and of small support, though probably not the smallest possible, is described
by the rules shown in Figure 5. Note that the convolution stencil (c) is only
used for calculating temporary values before the application of the uniform left
scheme.

16
1

16
1

16
1

16
1

16
1

8
5 16

1

16
1

16
1

8
3

8
3

16
32
3

1
64

9

1
64

1
64

1
64

32
3

32
3

32
3

16
13

8

16
1

16
1

3
816

1

1
4

1
4

1
4

1
4

Fig. 4. The scheme masks away from the y-axis: Catmull-Clark scheme on the right
and Loop scheme on the left
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Fig. 5. The scheme near the y-axis: (a) The stencil for a new value at old grid points
on the y-axis. (b) The stencil for a new value at new grid points on the y-axis. (c) The
stencil of the operator defining temporary values on the y-axis before the application
of the Loop scheme on x < 0
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Now, that we have a scheme which reproduces all quadratic polynomials, it is
left to show that this scheme generates C2 limit functions over the entire plane.

Remark 1. The choice Q = Q+ on the y-axis is somewhat arbitrary. Different
choices of Q lead to different subdivision rules. By experimenting with other
choices of Q on the y-axis, we found that for some of them there does not exist
subdivision schemes S with positive weights. (e.g. Q = Q− or Q = Q−+Q+

2 on
the y-axis). With Q = Q+ on the y-axis we were able to get a subdivision scheme
that consists of only three special rules, in which all weights are positive. Warren
and Schaefer, in [5], chose Q = Q−+Q+

2 on the y-axis, which results in a scheme
that has negative weights (They also extended the tri-quad scheme to meshes of
arbitrary topology).

4.2 The Analysis Procedure and the Tri-quad Example

In the following, we describe the procedure for checking whether a given quasi-
uniform scheme S is Cm. We assume that S generates polynomials up to degree
m, in the sense that (13) is satisfied for some Q. The justification of the different
steps is given in [4].

The following method was employed by Warren and Schaefer for analysing
their version of tri-quad subdivision [5], and also by Hakenberg [7], for the anal-
ysis of volumetric subdivision schemes over three-dimensional meshes.

The Analysis Procedure:
1. Let L ⊂ X denote a subset of mesh points around the origin such that the

values of the limit function in [−1, 1] × [0, 1] depend only on control points
in L. Furthermore, the values at iteration 1 in L and in EL, namely SP |L
and SP |EL, depend only on the initial values in L, P |L, where E is a shift
operator, EL = {(i, j + 1)|(i, j) ∈ L}.

2. Let A denote the local subdivision operator taking values in L to values in
L after one subdivision iteration. Let B denote the operator taking values
in L to values in EL.

3. Using the left and right eigenvectors of A, form a basis V for the vectors of
values in L such that the matrix form of A in the new basis is

Ã =
[

Λ C0

0 Y0

]
, (18)

Where Λ = diag(1, 0.5, 0.5, ..., 2−m, ..., 2−m). One way to do it is to complete
the (m + 1)(m + 2)/2 right eigenvectors,

Qf |L , f = xiyj , 0 ≤ i + j ≤ m , (19)

to a basis.
4. From the polynomial generation assumption about the scheme, it turns out

that the matrix form of B in the basis V is

B̃ =
[

Θ C1

0 Y1

]
, (20)
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where Θ is an upper-triangular matrix that has the same diagonal as Λ.
Moreover, Θ has certain zero values above the diagonal, creating such diag-
onal blocks of sizes 1, 2, 3, 4, ..., e.g., for m = 2

Θ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 0.5 0 ∗ ∗ ∗
0 0 0.5 ∗ ∗ ∗
0 0 0 0.25 0 0
0 0 0 0 0.25 0
0 0 0 0 0 0.25

⎤⎥⎥⎥⎥⎥⎥⎦ . (21)

5. A sufficient condition for Cm continuity is that the joint spectral radius of
Y0 and Y1, ρ∞(Y0,Y1), is strictly less than 2−m, where

ρ∞(Y0,Y1) =

lim sup
k∈ZZ+\0

(
max

{‖Yεk
Yεk−1 · · ·Yε1‖∞ : εi ∈ {0, 1}, i = 1, ..., k

}) 1
k . (22)

Moreover, if ρ∞(Y0,Y1) = 2−(m+α), 0 < α ≤ 1 then the m-th order deriva-
tives of the limit function are Hölder continuous with exponent α − ε for
arbitrarily small ε > 0. Of course, this only holds if the limit function away
from the y-axis is known to have that Hölder exponent.

Remark 2. Practical methods for estimating the joint spectral radius are given
in an appendix in [8]. In particular, an upper bound for the joint spectral radius
ρ∞(Y0,Y1) can be computed by estimating the norms of all possible products of
finite length k of Y0 and Y1. I.e.,

ρ∞(Y0,Y1) ≤ ρ[k]
∞ (Y0,Y1) , (23)

where

ρ[k]
∞ (Y0,Y1) =

(
max

{‖Yεk
Yεk−1 · · ·Yε1‖∞ : εi ∈ {0, 1}, i = 1, ..., k

}) 1
k . (24)

Remark 3. The condition ρ∞(Y0,Y1) < 2−(m+α), in view of the special basis V
used in (18), implies that the mth degree Taylor expansion coefficients of S∞P
at dyadic points on the y-axis are all uniformly bounded. This is the main idea
behind the proof in [4]

4.3 The Tri-quad Scheme – C2 Analysis

Let us apply our analysis tool to the tri-quad scheme presented in § 4.1. The set
L is the set of |L| = 45 points

L = {(i, j) : i = 0, 1, 2 , −4 ≤ j ≤ 4 , j ∈ ZZ}∪

{(i, j + 0.5i) : i = −1,−2 , −4 ≤ j ≤ 4 , j ∈ ZZ} .
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The matrices A and B are evaluated as follows: First we choose an ordering of
the points in L, L = {(i1, j1), · · · , (i|L|, j|L|}. An entry Ak,� in A corresponds
to a pair of points ((ik, jk), (i�, j�)). Applying the subdivision scheme to initial
data set P = δ(i�,j�) which is 1 at the point (i�, j�) and zero elsewhere, we have

Ak,� = (Sδ(i�,j�))(ik,jk), k = 1, · · · , |L|, � = 1, · · · , |L|.
The entries of the matrix B are

Bk,� = (Sδ(i�,j�))(ik,jk+1), k = 1, · · · , |L|, � = 1, · · · , |L|.

The matrices Ã and B̃ are just the representation of A and B, respectively,
in another basis V . The construction of this basis is described in item 3 of the
analysis procedure above, and it involves the computation of the polynomial
eigenvectors of S by (19).

The upper-left block Θ of B̃ for the tri-quad scheme is

Θ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −0.1859 0.0476 −0.0039 0.0271 −0.0181
0 0.5 0 −0.0036 −0.1398 0.0921
0 0 0.5 −0.0968 0.0241 −0.0216
0 0 0 0.25 0 0
0 0 0 0 0.25 0
0 0 0 0 0 0.25

⎤⎥⎥⎥⎥⎥⎥⎦ . (25)

A bound for ρ∞(Y0,Y1) may be estimated by ρ
[k]
∞ (Y0,Y1) using Remark 2,

and this is used to compute a lower bound αk = −2 − log2(ρ
[k]
∞ (Y0,Y1)) of the

Hölder exponent. We obtained

α ≥ α18 = −2− log2(ρ[18]
∞ (Y0,Y1)) = 0.5942. (26)

Hence, we deduce that the tri-quad scheme is at least in C2.5942. A straightfor-
ward extrapolation of the values αk as a function of 1/k indicates that they tend
to 1, leading to the conjecture that the tri-quad scheme is C3−ε for any ε > 0.
This conjecture is, at least, in agreement with the spectral radii of Y0 and Y1,
ρ(Y0) = ρ(Y1) = 1

8 .

5 C2 Subdivision Around an Extraordinary Vertex

In this section, we summarize the results of a recent paper by Zulti et. al [8],
in which the above method was utilized for designing subdivision rules that
generate C2-continuous limit functions around an extraordinary vertex.

In commonly-used subdivision schemes, such as Loop and Catmull-Clark,
smoothness analysis around extraordinary vertices requires to find a special
parametrization (characteristic map), in which the surface can be written as
a differentiable function of two variables [9, 10, 11].

Typically, subdivision schemes generate surfaces that are C1-continuous in
the vicinity of extraordinary points. However, most subdivision schemes do
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(0,0)

(0,1)

Fig. 6. The grid Xn - a triangulation with one extraordinary vertex (n = 5)

not achieve C2-continuity near extraordinary points. One way to achieve C2-
continuity is to enforce zero curvature (flatness) at extraordinary points, which
is a disturbing shape deficiency [29]. The degree estimates by Prautzsch and
Reif [30] suggest that a subdivision scheme must be quite complicated in order
to achieve C2-continuity without flat points. Such schemes have been shown to
exist by Prautzsch [31] and by Reif [32], but they have especially large supports,
and are considered impractical for applications in surface design.

The setting chosen by Zulti and Levin [8] differs from the standard setting
of subdivision, by the fact that the underlying mesh is assumed be regular,
with the exception of a single extraordinary vertex. Such a mesh fits well into
the framework of non-uniform stationary subdivision (see Fig. 1(d)). We let Xn

denote the set of vertices of the infinite triangulation, where the extraordinary
vertex is positioned at the origin, and where all edges emanating from it have
length 1, and all triangles are equivalent (see Fig. 6). In the following, n stands
for the valency of the extraordinary vertex. The n infinite rays emanating from
the extraordinary vertex are called extraordinary lines, and are marked by thick
lines in Fig. 6.

The scheme is constructed by the same method as we used for the piecewise-
uniform univariate scheme in § 3.5 and the tri-quad scheme in § 4.1. The smooth-
ness analysis is mainly based on the procedure described in § 4.

As in the tri-quad scheme from § 4.1, this is again a demonstration of the fact
that the route to high order smoothness goes through polynomial reproduction.
In particular, before we can achieve C2 continuity, we must fulfill the conditions
for reproduction of quadratic polynomials.

The new scheme is based on the quartic three-directional Box-spline scheme
(as in Loop’s scheme [28]), and is guaranteed to generate C2 limit functions
whenever the valency n of the extraordinary vertex is in the range 4 ≤ n ≤ 20. It
consists of two special sets of subdivision rules: Subdivision stencils that operator
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in the vicinity of the extraordinary vertex, and subdivision stencils that operate
along the extraordinary lines. This is in contrast to the standard subdivision
schemes (e.g. Loop’s scheme) which only use special subdivision rules near the
extraordinary vertex.

The parameterization used to define the surface is easily derived from the
mesh Xn. In the characteristic map approach, the parameterization depends
not only on the mesh connectivity, but also on the subdivision weights, making
the problem of deriving subdivision weights non-linear and complicated. The
addition of the special rules along extraordinary lines, together with the choice
of a simple parameterization, allow us to achieve C2 continuity via polynomial
reproduction.

Unfortunately, because of the existence of extraordinary lines, the scheme
cannot be directly applied to meshes of arbitrary topology. On-going work is
being done by Zulti et. al. on using this method for C2 hole-filling, which has
practical applications.

5.1 Subdivision Near the Extraordinary Lines

In this section we construct and analyze subdivision rules that operate in the
vicinity of the extraordinary lines, emanating from the extraordinary vertex.
We consider a grid Xc, in which the extraordinary line is an infinite boundary
between two regular domains, as shown in Fig. 7. With c = cos(2π

n ), this configu-
ration is similar, up to an affine transformation, to the configuration of triangles
near the extraordinary lines of Xn (Fig. 6).

Construction
From each side of the extraordinary line, and away from the extraordinary vertex,
we will use the well-known quartic Box-spline subdivision scheme, which was pre-
viously generalized by Loop to arbitrary triangular meshes [28] (see left part of
Fig. 4). This defines the subdivision operator S away from the extraordinary line.

(0,0)
(1,c)

(0,1)

(-1,c)

Fig. 7. The grid Xc—an infinite boundary between two regular domains
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In the following, we adopt the following notation for partial derivatives of
polynomials, in order to shorten some of the formulas:

fij =
∂i+j

∂xi
1∂xj

2

f.

Using the method described in [2], it is easy to show that the corresponding Q
operator, for reproduction of all cubic bivariate polynomials, is given by

Qf(x) = f(x)− 1
6

(
f11 + (2c− 1)f12 + (c2 − c + 1)f22

)
(x), x1 < 0, (27)

on the left half-plane, and

Qf(x) = f(x)− 1
6

(
f11 − (2c− 1)f12 + (c2 − c + 1)f22

)
(x), x1 > 0, (28)

on the right half-plane. Here c is a parameter that determines the grid Xc, over
which the scheme is defined (Fig. 7). In order to complete the definition of Q for
all x ∈ Xc, we define Q on the extraordinary line by an average of (27) and (28),

Qf(x) = f(x)− 1
6
(
f11 + (c2 − c + 1)f22

)
(x), x1 = 0, (29)

The strategy we employ, for computing the subdivision operator S, is based
on requiring that S reproduces all quadratic polynomials. As a consequence of
Corollary 2, this requirement reduces to a system of linear equations in which
the unknowns are the subdivision weights.

We have to complete the definition of S by computing new subdivision rules
at all points where the regular Box-spline rule uses points on the extraordinary
line. Therefore, we need to redefine SP (x) for all x ∈ X such that −2 ≤ x1 ≤ 2.
Due to the symmetry between the right and left sides of the extraordinary line,
and the invariance under integer shifts in the upwards direction, we only need
to compute six new stencils. Fig 8 depicts the new stencils with the unknown
subdivision weights.

Remark 4. Formula (29) that defines Q on the extraordinary line is not the
unique choice that leads to a C2 scheme. Other formulas that we tried led to
schemes with lower fractional smoothness, or to complicated formulas for the
subdivision weights. It is possible, though, that a better choice of Q still exists.
The choice of stencils in Fig. 8 is also not unique. In particular, stencil #1, which
uses 8 points, could be replaced by a four-point stencil, at the expense of lower
fractional smoothness of the limit function.

In order to achieve reproduction of all quadratic polynomials, we require that
S satisfies (13) for m = 2. For each of the unknown stencils, we reduce (13) to a
system of linear equations. As a detailed example, consider stencil #6, with the
6 unknowns w61, . . . ,w66. Without loss of generality, we place the origin at the
vertex with the weight w62. The formal notation for stencil #6 then becomes:

SP (2, 2c− 1) = w61P (0,−1) + w62P (0, 0) + w63P (0, 1)
+ w64P (1, c− 1) + w65P (1, c) + w66P (2, 2c− 1). (30)
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w11

w12

w13

w14

w15

w16

w17

w18

w21

w22

w23

w24

w25

w26

w27

w31

W32

w33

w34

w35

w36

w41

w42

w43

w44

w45

w46

w51

w52

w53

w54

w55

w56

w57

w61

w62

w63

w64

w65

w66

(1) (2) (3)

(4) (5) (6)

Fig. 8. Stencils near the extraordinary line

From (13) we get the requirement

SQf(2, 2c− 1) = Qσf(2, 2c− 1), ∀f ∈ π2. (31)

Using (30) and (28)-(29), we compute SQf(2, 2c− 1) with f taken from a basis
of the polynomials up to degree 2. This gives us the left-hand side of (31).
For the right-hand side, Qσf(2, 2c − 1), we simply substitute σf in (28), and
evaluate at (2, 2c− 1). This yields the following 6 equations, for the polynomials
f = 1,x1,x2,x2

1,x1x2, x2
2 + 1

3 (c2 − c + 1) respectively.

w61 + w62 + w63 + w64 + w65 + w66 = 1
w64 + w65 + 2w66 = 1

−w61 + w63 + (c− 1)w64 + cw65 + (2c− 1)w66 = c− 1
2

− 1
3 (w61 + w62 + w63) + 2

3 (w64 + w65) + 11
3 w66 = 11

12
4c−5

6 w64 + 4c+1
6 w65 + 11

6 (2c− 1)w66 = 11
24 (2c− 1)

w61 + w63 + (c− 1)2w64 + c2w65 + (2c− 1)2w66 = 5c2−5c+2
4

Remark 5. The usage of f = x2
2 + 1

3 (c2 − c + 1) instead of f = x2
2 serves the

purpose of simplifying the last equation, but is not necessary. Any choice of basis
for the quadratic polynomials yields an equivalent linear system.

This system has a unique solution for any value of c, given in Table 1. For
stencils 1-5 we found that the system of 6 equations resulting from (13) has an
infinite number of solutions. We therefore added extra conditions until the solu-
tion became unique for all c. In particular, the extra conditions are chosen such
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Table 1. Subdivision weights near the extraordinary line, and the additional conditions
that were imposed for uniqueness. For valence n, substitute c = cos( 2π

n
)

w11 = w16, w13 = w18 w23 = w25 w31 = w36

w14 = w15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w11 = w16 = −c+2c2

16
w21 = w26 = c

8
w31 = w36 = 1−3c+2c2

24

w12 = w17 = 1+4c−4c2

16
w22 = w27 = 1−c

8
w32 = w35 = 9+2c−4c2

24

w13 = w18 = 1−3c+2c2

16
w23 = w25 = 1−2c+2c2

8
w33 = w34 = 2+c+2c2

24

w14 = w15 = 3
8

w24 = 1+c−c2

2

w43 = w44 w53 = w55 w61 = 1−3c+2c2

48

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . w62 = 5+4c−4c2

48

w41 = w46 = 5−5c+2c2

24
w51 = w57 = 5+2c

96
w63 = −c+2c2

48

w42 = w45 = 7+6c−4c2

24
w52 = w56 = 7−2c

96
w64 = 17+2c

48

w43 = w44 = −c+2c2

24
w53 = w55 = 7−4c+4c2

96
w65 = 19−2c

48

w54 = 29+4c−4c2

48
w66 = 1

8

that we get the regular Box-spline scheme in the specific case n=6 (c= 1
2 ). The

extra conditions are presented in Table 1. For the entire collection of subdivision
weights derived in this paper, the reader is referred to the Excel sheet in [33].

Analysis
The above construction guarantees that S, as defined over the grid Xc reproduces
all quadratic polynomials, for any value of c. For the purpose of subdivision over
Xn, we are only interested in the particular case c = cos( 2π

n ) for n ≥ 4.
Our subdivision scheme over Xc falls into the category of quasi-uniform

schemes, because the same subdivision weights are used everywhere along the
extraordinary line. Having established the reproduction of all quadratic polyno-
mials, we can directly use the necessary and sufficient condition for convergence
and for Cm continuity from Levin and Levin [4], as summarized in § 4.2

The most difficult part of the analysis procedure is the estimation of joint
spectral radius (step 5). The definition of joint spectral radius, and a collection of
techniques for estimating it, are given in an appendix in [8]. Using the methods
therein, we have shown that in the range 0 ≤ c ≤ 1, the scheme is at least
C2.5847-continuous. The range 0 ≤ c ≤ 1 contains all values of c = cos(2π

n ), for
valencies n ≥ 4. For c = 0, 1

2 , 1 it can be shown that the joint spectral radius is
exactly 1

8 , and therefore the scheme is C3−ε-continuous. The scheme has been
found to be at least C2-continuous in the range − 3

8 ≤ c ≤ 11
8 , which does not

include valency n = 3, where c = − 1
2 .

5.2 Subdivision Near the Extraordinary Vertex

In this section we complete the definition of the subdivision scheme on the grid
Xn (see Fig. 6), by introducing new subdivision rules that operate near the
extraordinary vertex.
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The method of construction is the same as the one used to construct the
special rules near extraordinary lines. We define the operator Q over Xn, and
then find a set of subdivision rules that satisfy (13). The new subdivision scheme
is C2-continuous for valencies 4 ≤ n ≤ 20.

Construction
We start by defining the operator Q over Xn. Recall that the operator Q over
Xc is given by (27)-(29). We define Q at any point in Xn, except for the origin,
to be equivalent to (27)-(29), but since the parametrization of Xn is different
than that of Xc, we rewrite Q as follows:

Qf(x) = f(x)− 1
24

6∑
k=1

D2
xk−xf, ∀f ∈ π2, x ∈ Xn \ {0}, (32)

where x1, . . . , x6 ∈ Xn denote the 6 neighboring vertices of x, and D2
xk−x repre-

sents the directed second derivative in the direction of the k-th edge emanating
from x, defined by

D2
(a,b)f = a2f11 + 2abf12 + b2f22.

It can be shown that (32) coincides with (27)-(29) over the grid Xc, and is
invariant to affine reparametrizations of the grid. We define Q at the origin by
the formula

Qf(0) = f(0)−
(

1
6
− c

12

)
(f11 + f22), , f ∈ π2. (33)

Remark 6. This choice of Q is somewhat arbitrary. The reasoning that led to
the expression in (33) is the following: From symmetry considerations it follows
that Q must have the form Qf(0) = f(0)− q(f11 + f22). The value of q is such
that f(0)−Qf(0) is the average of f(x)−Qf(x) along the n extraordinary lines
for all f ∈ π2.

The special subdivision rules near the vertex involve 8 new stencils, as de-
picted in Fig. 9. For the edge rules, we choose the 8-point stencil, as in the
Butterfly scheme [34]. Although this is not necessary for achieving C2 smooth-
ness, this provides us with additional degrees of freedom for maximizing the
fractional smoothness.

The weights for each of the 8 special subdivision rules are computed by
solving a system of linear equations. Six of the linear equations arise directly
from substituting the 6 monomials in (13). The remaining degrees of freedom
are used to enforce symmetries, and to tune the scheme for best smoothness
properties. In particular, we make sure that for n = 6 (regular mesh), we get the
regular Box-spline scheme.

For the complete derivation, the reader is referred to [8]. The entire collection
of subdivision weights is also available in the form of an Excel Sheet, from [33].
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Fig. 9. Stencils near the extraordinary vertex

Analysis
The Cm smoothness around any given vertex of the initial mesh is easy to
characterize, provided that we have established the smoothness in the regular
regions, and along the extraordinary lines. By construction, we guarantee that
the local subdivision operator has the eigenvalues 1,12 ,12 ,. . . ,2−m,. . . ,2−m, with
eigenvectors that produce the polynomials up to degree m in the limit (see § 2.3).
We only need to establish the smoothness of the limit functions corresponding to
the rest of the eigenvectors. Therefore, a sufficient condition for Cm continuity,
is that all the rest of the eigenvalues have modulus less than 2−m. This is stated
formally in [8].

For valencies 4 ≤ n ≤ 20, we found that the subdivision matrix has the
leading eigenvalues 1,12 ,12 , 1

4 ,14 ,14 , λn, with λn < 1
4 . As the valency increases, for

Fig. 10. Basis functions near the extraordinary vertex of valency 9
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n > 6, the smoothness decreases, but it remains above C2 for 4 ≤ n ≤ 20. For
more details, the reader is referred to [8].

Figure 10 shows some ‘basis functions’ of the subdivision schemes, i.e., the
limit functions which result from initial data which is 1 at one vertex and 0
everywhere else. The black lines correspond to values of the limit function on
the extraordinary lines.

6 Subdivision with Transfinite Boundary Conditions

Subdivision schemes that consider transfinite boundary conditions were first
introduced under the name Combined Subdivision Schemes in [3]. The limit sur-
faces generated by these schemes are capable of satisfying boundary conditions
that are not necessarily given by polynomials or spline functions. For example,
the scheme described in [12] generates limit surfaces that interpolate arbitrary
parametric curves. The curves are not required to be subdivision curves or spline
curves. This is achieved by special subdivision rules that operate near the curves,
and involve evaluations of the parametric curves at each refinement iteration.

In section 6.1 we give a brief introduction to the theory and practice of
Combined Subdivision Schemes. As a demonstration of their construction and
application, section 6.2 presents a modification of the Catmull-Clark scheme,
which is designed to generate surfaces under C1 boundary conditions. For a
more in-depth and formal presentation, the reader is referred to [3].

6.1 An Introduction to the General Theory of Combined
Subdivision Schemes

Definition
Recall that ordinary subdivision schemes are defined by

Pn+1 = SPn, n = 0, 1, . . . ,

where Pn ∈ l(ZZs) signifies a set of control points at level n. A Combined subdi-
vision scheme takes the form

Pn+1 = S (Pn,σnf) , n = 0, 1, . . . , (34)

where σ is the dilation operator σf = f
( ·

2

)
. The function f : E ⊂ IRs �→ IR,

plays the role of the boundary condition. It is defined over a subset E of the
s-dimensional space, which we call the exterior of the domain of S. The limit
function S∞(P, f) is defined over IRs \ E .

Different choices of E serve the purposes of different applications (see Fig. 11).
For prescribing the value and partial derivatives of the limit function at isolated
points, we use E = {0}. For satisfying transfinite boundary conditions given
along a hyper-plane, we use E = {x ∈ IRs | x1 ≤ 0}. The boundary is then
associated with the hyper-plane x1 = 0, and the boundary condition is formally
defined over the entire half-space E . For interpolating given values and partial
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Fig. 11. Different exteriors for bivariate combined subdivision schemes. (a) E = {0}.
(b) E = {x ∈ IR2 | x1 ≤ 0}. (c) E = {x ∈ IR2 | x1 = 0}. (d) E = {x ∈ IR2 | x1 · x2 = 0}.
The limit function of the combined subdivision scheme is defined over IR2 \ E

derivatives on a hyper-plane, by a bivariate function defined over the entire
plane, we use E = {x ∈ IRs | x1 = 0}. For interpolating given values and partial
derivatives on the x and y axes, we use E = {x ∈ IR2 | x1 · x2 = 0}.

We assume that the operator S is a linear and local operator, both in P and
in f . We also assume that S is bounded, in the sense that S(P, f) is bounded by
a constant times the magnitude of certain partial derivatives and values of f . S
is allowed to use values and partial derivatives of f , and in general, any linear,
bounded and local functional applied to f . For the exact formulation of these
assumptions, see [3].

Polynomial Reproduction
The formulation of polynomial reproduction uses the notion of the operator Q,
introduced in § 2.2, and extends it to this context. We say that S reproduces all
polynomials up to degree m, if there exists an operator Q : πm(IRs) �→ l(ZZs)
such that

S∞(Qf, f) = f, ∀f ∈ πm(IRs). (35)

A simple of extension of Lemma 3 states that (35) follows if we have

S(Qf, f) = Qσf, f ∈ πm, (36)

where σ is the dilation operator σf = f( ·
2 ). As a consequence, the requirement

of polynomial reproduction is reduced to a set of linear equations in which the
unknowns are the subdivision weights. This is the key for constructing new
subdivision schemes, as demonstrated by the example in § 6.2.

Smoothness Analysis
The Cm smoothness criterion requires that S∞(P, f), defined over the open set
IRs \ E can be extended to a Cm continuous function defined over the closure of
IRs \ E , for any P and any smooth enough f .

Since f play the role of boundary conditions, we also require that the limit
function S∞(P, f) has a Cr connection with f , for some 0 ≤ r ≤ m. More



300 A. Levin

accurately, we require that the function which coincides with f over E , and
coincides with S∞(P, f) over IRs \ E , is Cr-continuous.

In the open set IRs \ E , smoothness is typically guaranteed by the properties
of the ordinary subdivision scheme that is applied away from the boundary.
Special analysis tools are required in order to establish the smoothness near the
boundary of E , for arbitrary (yet smooth enough) functions f . Fortunately, there
exists a theorem that reduces the analysis to the case f ≡ 0.

It is shown in [3], that if S satisfies the requirement of polynomial repro-
duction up to degree m (35), then the same smoothness properties that hold
for S∞(P, 0) will hold for S∞(P, f), as long as f is Cm-continuous itself. It is
also proven that S∞(P, f) will always have a Cr connection (r ≤ m) to f at
the boundary of E , if all partial derivatives of order ≤ r of S∞(P, 0) vanish
there.

As a consequence of this powerful theorem, smoothness analysis can concen-
trate entirely on the case f = 0. For this case, existing analysis tools can be
used, such as eigenvalue analysis, as in § 5, and the joint-spectral radius test
from § 4.

6.2 Example: Catmull-Clark Surfaces with C1 Boundary
Conditions

In this section we develop subdivision rules that operate at the boundary of
a Catmull-Clark surface, where C1 boundary conditions are prescribed. These
rules interpolate boundary curves and cross-boundary first order derivatives
along the boundary curves. The scheme originally appeared in [13], and the
details of its construction and analysis can be found in [3].

As in the tri-quad scheme from § 4.1, we apply certain rules to position the
boundary vertices, and then simply use the Catmull-Clark scheme to calculate
all of the internal vertices. The boundary rule is chosen in such a way that the
overall scheme reproduces all bivariate cubic polynomials, and generates C2-
continuous limit functions (except at extraordinary vertices).

In the following, we show how to construct and analyze the boundary posi-
tioning rule, and how to use it for smoothly blending N surfaces surrounding an
N -sided hole. Examples of the limit surfaces of our scheme are shown in Figures
12 and 13.

Construction of a Boundary Rule
For the construction and analysis, we consider only regular parts of the mesh,
in which bicubic B-spline subdivision is applied. For the formal definition of our
combined subdivision scheme, we use the exterior E = {x ∈ IR2 | x1 ≤ 0} (see
Fig. 11(b)).

We look for a combined subdivision operator S that operates over control
points P defined on the right half-plane ZZ2 \ E , and a function f defined on E .
We require that S reproduces cubic polynomials in the sense of (35), and that it
generates C2-continuous limit functions, and has C1-continuous connection with
the function f .
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Fig. 12. Filling a 5-sided hole with C1 boundary conditions: the initial data, two
iterations of subdivision, and the limit surface

Fig. 13. 5-sided surfaces generated by our algorithm

We choose to construct S by combining a boundary positioning rule with an
ordinary subdivision rule. In each iteration, we compute the control points P at
x1 = 0, by a linear combination of the value of P at x2 = 1 and values and partial
derivatives of f at x2 = 0. Then, we apply the well known bicubic B-spline sub-
division operator. The boundary positioning is defined as followed (see Fig. 14):
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a
b

c

c

h

e

e

Fig. 14. A stencil for C1 contact

P ∗(0, α2) =aP (1, α2) + bf(0, α2) + c (f(0, α2 + 1) + f(0, α2 − 1)) +

h
∂

∂x1
f(0, α2) + e

(
∂

∂x1
f(0, α2 + 1) +

∂

∂x1
f(0, α2 − 1)

)
(37)

It is shown in [3] that the Q operator, for bicubic B-spline subdivision, is given
by

Qf = f − 1
6

(
∂2f

∂x2
1

+
∂2f

∂x2
2

)
, ∀f ∈ π3.

From (36) it is easy to see, that in order to reproduce all cubic polynomials, it
is sufficient that the boundary positioning rule satisfies

P ∗(0, α2) = Qf(0, α2), ∀α2 ∈ ZZ, (38)

whenever P = Qf |ZZ2\E . By substituting the cubic monomials in f , and α2 = 0,
in (37) and (38), we get the following constraints on a, b, c,h, e:

f = 1 a + b + 2c = 1
f = x1 a + h + 2e = 0

f = x2
1

2a

3
= −1

3

f = x2
2 −a

3
+ 2c = −1

3
f = x1x

2
2 −a

3
+ 2e = 0

The monomials f = x2, x1x2, x
2
1x2, x

3
1, x

3
2 only add redundant linear equations,

due to the symmetry in the x2 direction. The unique solution is

a = −1
2
, b = 2, c = −1

4
, h =

2
3
, e = − 1

12
(39)
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Smoothness Analysis
As proven in [3], it is sufficient to consider the case f ≡ 0. In this case the
boundary positioning rule (37) reduces to

P ∗(0, α2) = −1
2
P (1, α2).

It is then easy to show that the operation of the combined subdivision scheme in
the right half plane ZZ2 \ E is equivalent to the uniform bicubic B-spline scheme
operating on initial control points P that satisfy

P (−α1, ·) = P (α1, ·), ∀α1 ∈ ZZ \ {0},
P (0, ·) = −1

2
P (1, ·).

For such P we have that S∞P vanishes on the x2-axis along with its first order
partial derivatives. It follows that S generates C2-continuous limit functions,
with C1 connection to f at x1 = 0, whenever f is C2-continuous.

Application to Hole Filling
In the following application, the user prescribes the C1 boundary conditions in
terms of a collection of parametric curves c, with corresponding cross-boundary
derivative functions d. The special positioning rule at the boundary follows di-
rectly from (37) and (39).

Before the n-th iteration of subdivision, we calculate the position of the vertex
v by the following boundary positioning rule: (see Fig. 15)

p(v) =2c(u)− c(u1) + c(u2)
4

− 1
2
p(v1)+

2−n

(
2
3
d(u)− d(u1) + d(u2)

12

)
. (40)

v

c(u )1
c(u )2

c(u)

v1

d(u)

d(u ) d(u )
1 2

Fig. 15. A boundary rule that involves cross-boundary derivatives
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The factor 2−n that multiplies values of d comes from the dilation σn in the
definition of a combined subdivision scheme (34).

This positioning rule guarantees a smooth limit surface, only if the boundary
curve c is smooth, and d is continuous. It is also required that the boundary
vertices are evenly spaced along the curve, namely u− u1 = u2− u.

A Corner Rule
To enable the interpolation of a piecewise-smooth boundary, we also need to
construct a special positioning rule at the corner between two smooth boundary
curves. This is done in [3], by considering a combined subdivision operator with
the exterior

E = {x ∈ IR2 | x1 ≤ 0 or x2 ≤ 0}.
In order for the above rule to be applicable to our net, we require that all

corner vertices be isolated, and have only two edges emanating from them. We
assume, for simplicity of the presentation, that the corner vertex v corresponds
to the points c1(0) = c2(0) of two intersecting curves, and that the parametric
intervals between two boundary vertices at level zero is 1. Figure 16 shows the
neighborhood of the corner vertex v before the n-th iteration (n = 0 corresponds
to the first iteration).

v

1v

1 2
d1

2d

c (0)=c (0)

2c (2  )-n

1c (2  )-n

1-nc (2   )2

1
1-nc (2   )

Fig. 16. A corner rule that involves cross-boundary derivatives

The corner rule operates before the n-th iteration of subdivision, and calcu-
lates p(v) by the following formula:

p(v) =
5
2
c1(0)− (c1(2−n) + c2(2−n)

)
+

1
4
p(v1) +

1
8
(
c1(21−n) + c2(21−n)

)
+ 2−n

(
29
48

(d1(0) + d2(0))− 1
12
(
d1(2−n) + d2(2−n)

))
(41)

− 2−n

(
1
48
(
d1(21−n) + d2(21−n)

))
.
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Compatibility Conditions
Since the surface first derivatives are determined at the corner vertex by the
given curves, the cross-boundary derivatives there d1(0) and d2(0) cannot be
arbitrarily chosen. For C1 smoothness, we require that

d1(0) = ċ2(0),
d2(0) = ċ1(0). (42)

For C2 continuity, we add the requirement that

ḋ1(0) = ḋ2(0). (43)

7 Conclusions

This paper presents a methodology that enables to construct subdivision schemes
for different applications. The common property of these subdivision schemes is
that they are piecewise-uniform. They all consist of uniform subdivision rules,
and special subdivision rules that are used near the boundaries between two
regular regions.

Near the region boundaries, different subdivision rules meet and interact.
For example, in the tri-quad scheme presented in § 4, Bicubics and quartic Box-
splines meet along the y-axis. Our approach identifies the ‘harmony’ between the
different subdivision rules with the property that the overall subdivision scheme
reproduces polynomials (quadratics or cubics)—a crucial property for high order
approximation, and for smoothness analysis.

We choose identity (11) as the formulation of polynomial reproduction, even
though it requires to introduce the new operator Q, because it extends well
from the uniform to the non-uniform case, and because we have the means
(Corollary 2) to transform it into a system of linear equations for deriving the
subdivision weights. As shown in [3], this theory also extends to the setting in
which transfinite boundary conditions are involved in each subdivision iteration.

For smoothness analysis, we have presented the joint-spectral radius test for
quasi-uniform schemes (see § 4), and the powerful theorem from [3] that reduces
the analysis of subdivision under transfinite boundary conditions to the case of
zero boundary conditions. Both analysis tools rely on polynomial reproduction.
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Abstract. As the tooth root has similar bone density to the jaw where
it is embedded, its complete boundaries are either missing or at low
contrast in the computed tomography (CT) volume data. This paper
proposes a hybrid method to create a ‘best-fit’ polygonal surface of the
patient-specific tooth. First, a level-set based shape prior segmentation
procedure is employed to extract a coarse whole tooth surface model
from CT volume. The surface model produced captures the smooth root
part, while losing details of the tooth crown. So, a post process - thin-
plate splines transform, involving a consistent semi-automatic landmarks
selection and re-placing procedure – is used to warp the crown part of the
coarse surface to recover the patient-specific local details of the crown.

1 Introduction

Accurate 3-dimensional geometric crown models are now available from different
sources, such as destructive scanning method, laser system, intra-oral camera,
and so on. However there are applications being developed for modeling and
treatment simulation that require additionally tooth root information. All the
former methods provide data on the tooth crowns only and nothing on root form.
Therefore, researchers have explored various methods to produce 3D whole tooth
models.

Nishii and Terai et al. use root information from CT volumes with crown
forms obtained using laser scanning [1, 2]. Registration of the data sets is ac-
complished using ceramic markers present in both images. For these methods,
both patient-specific CT volume and patient-specific laser scanning crown data
are needed.

In [3], Enciso et al. use a patient-specific 2D radiograph and a 3D geometric
prior model to produce a patient-specific 3-dimensional model of the whole tooth
using radial basis functions. But a 2D radiograph lacks depth information, and
the warp procedure couldn’t reach the ‘best-fit’ in some directions.

In this paper we use the patient-specific CT volume and a 3D geometric prior
model to produce a ‘best-fit’ patient specific 3D surface model of the whole tooth
in two steps: first, use a level-set based shape prior segmentation procedure to
get a coarse tooth surface model, then recover the local details of the tooth crown
using thin-plate splines warp.

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 308–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The rationale for this approach is that, at present 3D CT imaging of dental
patients is routine, but current widely used imaging devices are not specifically
for dentistry and lack detail particular to the tooth root. Note that, 3D volu-
metric imaging devices developed specifically for dentistry are recently released
(NewTom from Aperio Services) which feature a lower absorbed radiation dose.
But these devices are too expensive, and won’t be widely used in the very future.
And also laser scanning isn’t routine for dental patient inspection.

2 Create Coarse Surface Model Using Level-Set Based
Shape Prior Segmentation

First, we must extract the 3D whole tooth model from the patient CT volume
data. While as the tooth root is embedded in the jaw, the complete boundaries
are either missing or are at low resolution and low contrast, such as Fig. 1 shows,
those all-intensity based segmentation technologies do not work at all. So, the
use of information about shape is indispensable.

There are many works on shape priors segmentation in the literature. For
example, Leventon et al. 2000 [4], Chen et al. 2002 [5], Cremers et al. 2003 [6].

Our segmentation process is mainly based on Chen–Caselles’s model.
In [7], by extending the traditional energy-based active contours (snakes),

Caselles et al. developed Can energy function E(C) over a curve , which reads:

min

C(q)
∫

g(|∇I(C(q))|)
∣∣∣C ′

(q)
∣∣∣dq (1)

where I : Ω → R is an image defined on Ω, and g is a function of the image
gradient, usually it is of the form:

g(|∇I|) =
1

1 + |∇I|2 (2)

By minimizing the energy E(C), the curve C will be stable on the boundaries
of objects in the image, where the gradients of intensity are very large.

In 2002, Chen et al. [5] developed a variational framework by incorporating
shape priors into Caselles’ model. They proposed a modified procrustes method
to describe the shape priors. The method is as follows. Let C∗ be a curve, called
shape prior, representing the boundary of an object, and C be another curve,
then the difference between curve C∗ and C, e.g., the two objects, is defined as:

min

C(q)
∫

d2(μRC(q) + T )
∣∣∣C ′

(q)
∣∣∣dq (3)

where μ, R and T are the parameters for scaling, rotation and translation, and
d(x, y) = d(C∗

, (x, y)) is the distance from a point (x, y) to the curve C∗. Then,
by combining these two terms, Chen et al. proposed the energy for shape prior
segmentation as:
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Fig. 1. Volume-rendering VOI and overlaid prior model

E(C,μ,R,T) =
∫
{g( |∇I(C(q))| )+λ

2
d2(μRC(q) + T)}

∣∣∣C′
(q)
∣∣∣ dq (4)

where λ > 0 is a parameter. Moreover, they choose g(|∇I|) as:

g(|∇I|) =
1

1 + β |∇Gσ ∗ I| (5)

where β > 0 is a parameter, and Gσ(x) = 1
σ e−|x|2/4σ2

.
To reduce the computation time, we first overlay the volume-of-interest (VOI)

in the CT volume and the 3D geometric prior model in close proximity, such as
Fig. 1 shows.

Fig. 2 shows several time steps in the surface evolution procedure of seg-
mentation and Fig. 3 shows the geometric polygonal surface of the whole tooth
model extracted from the final segmentation result.

We note that the resultant surface model has an acceptable smooth root
part, while losing local details of the tooth crown. The reason is that these
shape prior segmentation approaches are extrinsic and depend to a large extent
on the given shape prior model. It works well for the tooth root part, as it is
smooth and bears much similarity to the shape. While the real tooth crown has
many patient-specific local details, the coarse model produced is ‘too smooth’
and its shape is not well consistent with the patient CT volume data. So a post
process must be applied to recover the local details of the tooth crown for the
coarse surface model.
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Fig. 2. Several time steps in the surface evolution procedure

Fig. 3. Level-set based shape prior segmentation producing coarse surface model

3 Recover the Patient-Specific Details of the Tooth
Crown by Thin-Plate Splines

As the tooth crown has a high contrast boundary feature in the CT volume,
we use thin-plate splines to deform the crown part of the coarse surface model
to match the patient CT volume information, producing the ‘best-fit’ polygonal
surface of the whole tooth.
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3.1 Background

Thin-plate splines (TPS) are widely used in morphometrics to define changes
of shape between subjects of the same species [8, 9, 10], and used in scattered
data interpolation [11]. The basic idea is interpolating specified points while
minimizing an approximate curvature (integrated squared second derivative),
resulting in a smooth deformation without unexpected ripples and variations:∫ (

∂2f

∂x2

)2

+
(

∂2f

∂y2

)2

+
(

∂2f

∂z2

)2

+2
(

∂2f

∂x∂y

)2

+2
(

∂2f

∂x∂z

)2

+2
(

∂2f

∂y∂z

)2

dxdydz

(6)
Often, when the number of points to be interpolated is small, a simple radial
basis function (RBF) is used for an analytical solution to the minimum of the
functional (6).

The radial basis formulation of TPS is:

δ(p) =
n∑

k=1

ck |p− pk|2 log |p− pk|+ a1 + (a2, a3)p (7)

where δ(p) is the desired displacement at a point p, pk are the n landmarks
(each with a corresponding destination landmark tk), and aj are coefficients of
an affine registration (the measure (6) is invariant to the offset and linear slope
of the optimized function so separate terms are added to handle this).

The weights ck, aj(k = 1 . . . n, j = 1 . . . 3) needed to interpolate the data can
be found by solving the block matrix system[

κ ρ
ρT 0

] [
c
a

]
=
[

δ
0

]
(8)

where κr,c = ‖pr−pc‖2 log(pr−pc), r, c ∈ 1 . . . n; ρ is a n× 4 matrix containing
the constant (1) vector and the landmark location xk, yk and zk; and δ are the
data values to be interpolated. In a registration of 3D labeling application there
are three such interpolations needed, one for each of x, y and z; but the matrix
κ depends only on the data locations (not their values), so the matrix inverse is
needed only once.

In practice it is desirable to ‘regularize’ the system (8) [12]. Regularization
can be motivated both in terms of matrix conditioning and weight decay consid-
erations, and by assuming that the landmarks have some error associated with
them. In practice it involves adding an amount λI (= 0.001 for example) to the
diagonal of κ before inverting. This has the effect of reducing large coefficients,
thereby producing a much smoother warp.

3.2 Select Landmarks and Re-place Slidable Landmarks
Consistently

First, extract 3D anatomical landmarks from the tooth crown’s volume of inter-
est, and geometric landmarks from the coarse polygonal surface model produced
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Fig. 4. Geometric cross contour and landmarks on Z-slice. These black ball points on

the contour are geometric landmarks of surface model, and the grey star points are

anatomical landmarks of VOI. Fixed landmarks are encapsulated by little rectangles

in section 2. The 3D operator Op3 which is based on only first-order partial
derivatives is employed to extract the anatomical landmarks of the CT vol-
ume [13]. For the 3D coarse polygonal surface model, we detect the curvature
extrema and coordinate extreme points as the geometric landmarks.

As the result of automatic 3D landmark detection is not very satisfying and
there are false detections especially in the anatomical landmarks, we select de-
sired landmarks from the automatic detected candidates; at same time, select a
list of Z-slices of the CT volume. Calculate the cross geometric contours of the
crown part of coarse polygonal surface model, and overlay them on these slices
respectively, such as the white contour showed in Fig. 4.

Then, on these Z-slices, create groups of geometric landmarks on the 2D
contours, based on curvature extreme, curve length information and symmetry
consideration; and indicate interactively with the mouse corresponding anatom-
ical landmarks on the CT slices, as shown in Fig. 4.

We distinguish ‘slidable’ (contour-constrained) landmarks from unambiguous
(fixed) landmarks. The latter may include corners (curvature extrema), extreme
points (coordinate extrema), and symmetry points that are unambiguous in
visual inspection. Contour-constrained landmarks are those that require a sub-
jective judgment regarding where along the contour they are placed. Both the
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fixed anatomical landmarks and fixed geometry landmarks are indicated by little
encapsulation rectangles in Fig. 4. Obvious, these selected landmarks from first
step are all fixed landmarks on their respective Z-slices.

Although the placement of these fixed landmarks is fairly unambiguous, the
placement of point landmarks along a contour is quite arbitrary. Unfortunately
this arbitrary choice of landmark placement determines the quality of the result-
ing registration.

So, we adjust the placement of the contour-constrained landmarks along their
respective contours so as to produce the smoothest thin-plate splines that inter-
polate the contours and fixed landmarks, which removes an undesired ambiguity
in the case of TPS registration.

The basic idea is to minimize the squared (approximate) curvature (integral
of second derivative squared) of the splines, the same criterion that TPS min-
imizes, which can be approximated by the sum square of the RBF coefficients∑

cT c = cT c [14].
Assume that p is a particular landmark in the source image, t1 is the corre-

sponding destination landmark, v is a unit vector through t1 toward the adjacent
landmark on one side, and t is an undetermined point on this line. The objective
of minimizing the coefficient energy while being constrained to the line v can be
expressed as

min
t

cTc + λ((t− t1) · n) (9)

where n is the unit perpendicular vector (normal) to v and λ is a Lagrange
multiplier enforcing the constraint.

Recall the RBF expression (2D form here) t− p = κc + ρa, we get
c = κ−1(t− p− ρa), substituted into min

t
cTc:

min
t

(t− p− ρa)T(κ−1)Tκ−1(t− p− ρa) (10)

Note that the derivative is zero at the minimum. We get the gradient with respect
to t:

2(κ−1)Tκ−1t− 2(κ−1)Tκ−1p− 2(κ−1)Tκ−1ρa (11)

The function of λ in Eq.(9) is simply to keep the new landmarks t on the
original line segments, and this can also be achieved simply by moving t down its
gradient (excluding the constraint) and then projecting it back on the contour.

Now, with the gradient defined, the landmark re-placement algorithm it-
eratively moves the contour-constrained landmarks a small distance down the
gradient until the gradient approaches zero. In this procedure the landmarks
slide along the piecewise linear contour defined by the original (unadjusted)
landmarks.

Fig. 5 shows the effect of landmark re-placing procedure. In contrast to before
landmark re-placing, these contour-constrained slidable anatomical landmarks
(these star points) have moved along the piecewise linear contour defined by the
original landmarks. And the resultant warped contour after landmark re-placing,
which is indicated by the black stipple contour, is smooth and fit well to the CT
data.
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Fig. 5. Landmarks re-placing result. These star ‘slidable’ anatomical landmarks have

moved to some extent compare to the original landmarks in Fig. 4, and the resultant

warped contour is indicated by black stipple contour

One thing must be pointed out: as we use the same criterion of 2D TPS –
minimize the squared (approximate) curvature of the splines – the result is con-
sistent with 3D TPS transform in 3D space in the following procedure.

There is something that should be revised. The before-mentioned landmarks
selection and re-placing procedure on 2D slices simplifies the landmark corre-
spondence question and strengthens the robustness of TPS, but that does not
work for some coordinate extreme landmarks - more precisely, for the Z coordi-
nate extreme landmarks. In fact, those corresponding geometric and anatomical
landmarks usually have different Z coordinates. The revising procedure is ac-
complished by manual interaction. Usually there are only a few of these cases.

3.3 Warp with Thin-Plate Splines

At last, our program first computes the thin-plate coefficients from these land-
marks for the X, Y and Z (separately) displacements and then warps the crown
part of the coarse polygonal surface model to recover the patient-specific local
details of the crown.

Fig. 6 shows the final ‘best-fit’ polygonal surface model from different view an-
gles. Note that compared to Fig. 3, there are more local details on the crown part.
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Fig. 6. Final ‘best-fit’ polygonal surface model

4 Conclusion

In this paper, we present an integrated whole tooth reconstruction approach
by using mainly level-set based shape prior segmentation and thin-plate splines
warp. According to the patient-specific CT volume and a 3D geometric prior
model, the approach can generate a ‘best-fit’ model which is smooth on the
whole tooth shape and conserves the local details on the crown part.
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Abstract. In this paper the variational problems of finding Bézier sur-
faces that minimize the bending energy functional with prescribed border
for both cases of triangular and rectangular are investigated. As a result,
two new bending energy masks for finding Bézier surfaces of minimal
bending energy for both triangular and rectangular cases are proposed.
Experimental comparisons of these two new bending energy masks with
existing Dirichlet, Laplacian, harmonic and average masks are performed
which show that bending energy masks are among the best.

1 Introduction

For parametric curves and surfaces, the various techniques of variational de-
sign are widely used in geometric modeling [2, 5, 8, 9, 14, 15, 16, 17]. Variational
method is to optimize the shape of surface patches by minimizing a given
functional that represents the energy of the surface [5, 8, 15, 16]. A well known
objective functional is called surface internal energy. In the CAGD literature,
the surface internal energy is defined as a linear combination of stretching en-
ergy and bending energy. Because of its physical background, which represents
surface tension and rigidity, the internal energy for surface design was studied
extensively [8, 9, 14, 17].

The stretching energy is also called the Dirichlet functional in the mathemat-
ical literature. It is a linear substitute for the area functional. The problem of
finding a surface which minimizes the area functional with prescribed border has
been studied by many researchers [1, 3, 4, 7, 10, 11]. The first non trivial exam-
ple of polynomial surface with minimal area is the Enneper’s surface [3, 7]. The
problem of finding a surface with minimal area among all Bézier surfaces with
prescribed border is called Plateau-Bézier problem [3, 10, 11]. There are some
methods to find approximate solutions. The extremals of a Dirichlet functional
can be obtained by solving linear systems. In [5], Farin and Hansford proposed a
control net generation scheme for a Bézier surface by using a mask derived from
the discretization of the Laplacian operator. In [10, 11], Monterde proposed two

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 318–335, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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new masks related to the Plateau-Bézier problem, i.e. the Dirichlet mask and
the Laplacian mask. He also compared the results of several masks and Dirichlet
extremals for several different configurations of the boundary conditions. In [1],
Arnal et al. studied the triangular Plateau-Bézier problem.

The bending energy is an important part of internal energy, which can be
applied in surface and mesh fairing [12, 13, 18]. The standard approach for fair
surfaces and meshes is based on the idea of minimizing a certain fairness metric,
punishing features that are inconsistent with the fairness principle of the simplest
shape. In interactive surface modeling, bending energy functional, also called as
thin plate energy, is always chosen as a measure for the fairness of a surface and
mesh. Unfortunately, because the bending energy is rather difficult to handle,
it is usually approximated by its discrete version [13, 18]. We will discuss the
accurate answers to the problem in the case of Bézier surfaces.

The problem of finding a surface which minimizes the bending energy func-
tional with prescribed border is studied in this article. For triangular or rectan-
gular Bézier surface, the prescribed border is determined by the border control
points. Thus the problem can be formulated as: Given the exterior control points,
find the interior ones such that the resulting Bézier surface has minimal bending
energy among all Bézier surfaces with the same border. In this paper variational
problems for both the triangular and rectangular surfaces are discussed, and
corresponding masks related with surfaces of minimal energy are given.

2 The Bending Energy Functional

A triangular Bézier surface is defined as weighted sum of its control points. Let
{Pi,j,k}i+j+k=n be the control points of a triangular Bézier surface of degree n,
the Bernstein polynomials of degree n over a non-degenerate triangle V1V2V3 are
defined by

Bn
i,j,k(u, v, w) =

n!
i!j!k!

uivjwk i + j + k = n, i, j, k ∈ N

where u,v,w are barycentric coordinates with respect to the triangule domain
V1V2V3. Then the parametric triangular Bézier surface is defined as:

P (u, v, w) =
∑

i+j+k=n

Pi,j,kBn
i,j,k(u, v, w) u + v + w = 1, u ≥ 0, v ≥ 0, w ≥ 0

The triangular Bézier surface can also be represented as the bivariate form:

P (u, v) =
n∑

i+j=0

Pi,j,n−i−jBn
i,j,n−i−j(u, v, 1 − u − v)

If we denote

Pi,j = Pi,j,n−i−j , Bn
i,j(u, v) = Bn

i,j,n−i−j(u, v, 1 − u − v)

where Bn
i,j(u, v) =

(
n

i, j

)
uivj(1 − u − v)n−i−j and

(
n

i, j

)
= n!

i!j!(n−i−j)! .
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Then

P (u, v) =
n∑

i+j=0

Pi,jBn
i,j(u, v)

is defined on the triangle region: � = {(u, v) ∈ R2 : u ≥ 0, v ≥ 0, u + v ≤ 1}.
To simplify notation and the sequence of deduction, we shall make use of the

following operators:

– the invariant operator I : IPi,j = Pi,j ;
– the shift operators Ei : E1Pi,j = Pi+1,j , E2Pi,j = Pi,j+1;
– the difference operators

Δ1,0Pi,j = Δ1Pi,j = (E1 − I)Pi,j = Pi+1,j − Pi,j ,

Δ0,1Pi,j = Δ2Pi,j = (E2 − I)Pi,j = Pi,j+1 − Pi,j .

Then the triangular Bézier surface can be represented as:

P (u, v) = (I + uΔ1 + vΔ2)nP0,0

and the derivatives of triangular Bézier surface can be represented as:

Pu(u, v) = n

n−1∑
i+j=0

Δ1,0Pi,jBn−1
i,j (u, v)

Pv(u, v) = n

n−1∑
i+j=0

Δ0,1Pi,jBn−1
i,j (u, v)

A rectangular Bézier surface of degree n × m can be represented as:

P (u, v) =
n∑

i=0

m∑
j=0

Pi,jBn
i (u)Bm

j (v)

which defined on the rectangular region: Ω = {(u, v) ∈ R2 : 0 ≤ u, v ≤ 1},
where: Bn

i (u) = n!
i!(n−i)!u

i(1 − u)n−i.
For the sake of simplification, we use the difference operators, then:

P (u, v) = (I + uΔ1)n(I + vΔ2)mP0,0

and the derivatives of rectangular Bézier surface can be represented as:

Pu(u, v) = n

n−1∑
i=0

m∑
j=0

Δ1,0Pi,jBn−1
i (u)Bm

j (v)

Pv(u, v) = m

n∑
i=0

m−1∑
j=0

Δ0,1Pi,jBn
i (u)Bm−1

j (v)



Bézier Surfaces of Minimal Internal Energy 321

In the CAGD literature, the internal energy of a surface P (u, v) is the energy
that depends only on definition of the surface. In [14], the following functionals
are defined for stretching energy Estretch and bending energy Ebend:

Estretch(P ) =
∫

Ω

(‖Pu‖2 + ‖Pv‖2)dudv

Ebend(P ) =
∫

Ω

(‖Puu‖2 + 2‖Puv‖2 + ‖Pvv‖2)dudv

They depend only on intrinsic property of the surface. The internal energy
Einternal is a linear combination of Estretch and Ebend.The associated Euler-
Largrange equations of Estretch and Ebend are harmonic equation: ΔP = 0 and
multi-harmonic equation: ΔΔP = 0 respectively.

3 Extremals of the Energy Functional for Triangular
Bézier Surface

3.1 Extremals of the Bending Energy Functional

For triangular Bézier surface, the bending energy Ebend is bounded from be-
low because it is defined as integrals of bounded positive functions. Moreover,
the bending energy depends on (n−1)(n−2)

2 inner control points, each point has
three coordinates. Thus for triangular Bézier surface, the bending energy can be
considered as a functional defined on R

3(n−1)(n−2)
2 . The functional will reach its

extremals when its gradient vanishes.

Proposition 3.1. The control points {Pi,j}n
i+j=0 is the extremal of the bending

energy functional with the prescribed border if and only if

n−2∑
k+l=0

(
n − 2
k, l

)
(

2n − 4
i + k, j + l

)(Ak,l
i,j Δ2,0Pk,l + 2Bk,l

i,j Δ1,1Pk,l + Al,k
j,i Δ0,2Pk,l

)
= 0 (1)

for any i > 0, j > 0 and i + j < n where the coefficient

Ak,l
i,j =

i(2n − i − j − k − l − 3)(i2 + ij + ik − il − 3i + 2jk − 2kn − j + k + l + 2)

(n − i − j)(n − i − j − 1)(i + k)(i + k − 1)
+ 1

Bk,l
i,j =

(2n − i − j − k − l − 3)(i2j + i2l + ij2 − iln − 2ij + j2k − jkn)

(n − i − j)(n − i − j − 1)(i + k)(j + l)
+ 1

Proof. For any a ∈ {1, 2, 3}:

∂E(p)
∂xa

ij

= 2
∫
�

(
〈∂Puu

∂xa
ij

, Puu〉 + 2〈∂Puv

∂xa
ij

, Puv〉 + 〈∂Pvv

∂xa
ij

, Pvv〉
)

dudv
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For the sake of simplification, we use the difference operators and compute
the second order partial derivatives:

Puu(u, v) = n(n − 1)
n−2∑

i+j=0

Δ2,0Pi,jBn−2
i,j (u, v)

Puv(u, v) = n(n − 1)
n−2∑

i+j=0

Δ1,1Pi,jBn−2
i,j (u, v)

Pvv(u, v) = n(n − 1)
n−2∑

i+j=0

Δ0,2Pi,jBn−2
i,j (u, v)

Then, we get:

∂Puu

∂xa
ij

=
∂2

∂u2

( ∂P

∂xa
ij

)
=

∂2

∂u2

( ∂

∂xa
ij

n∑
k+l=0

Pk,lB
n
k,l(u, v)

)
=

∂2

∂u2

(
Bn

i,j(u, v)
)

ea

= n(n − 1)
(

Bn−2
i−2,j(u, v) − 2Bn−2

i−1,j(u, v) + Bn−2
i,j (u, v)

)
ea

where ea(a ∈ {1, 2, 3}) denotes the ath vector of the canonical basis. Similarly,
we can get the following partial derivatives:

∂Puv

∂xa
ij

= n(n − 1)
(

Bn−2
i−1,j−1(u, v) − Bn−2

i−1,j(u, v) − Bn−2
i,j−1(u, v) + Bn−2

i,j (u, v)
)

ea

∂Pvv

∂xa
ij

= n(n − 1)
(

Bn−2
i,j−2(u, v) − 2Bn−2

i,j−1(u, v) + Bn−2
i,j (u, v)

)
ea

Therefore, the differential of the bending energy functional:

∂E(p)
∂xa

ij

= 2n(n − 1)

[∫
�

((
Bn−2

i−2,j(u, v) − 2Bn−2
i−1,j(u, v) + Bn−2

i,j (u, v)
)〈ea, Puu〉

+ 2
(
Bn−2

i−1,j−1(u, v) − Bn−2
i−1,j(u, v) − Bn−2

i,j−1(u, v) + Bn−2
i,j (u, v)

)〈ea, Puv〉

+
(
Bn−2

i,j−2(u, v) − 2Bn−2
i,j−1(u, v) + Bn−2

i,j (u, v)
)〈ea, Pvv〉

)
dudv

]

Apply the following identity of Bernstein Polynomials and integral equation:

Bm
i,j(u, v)Bn

k,l(u, v) =

(
m
i, j

)(
n

k, l

)
(

m + n
i + k, j + l

)Bm+n
i+k,j+l(u, v)

∫
�

Bn
i,j(u, v)dudv =

1
(n + 1)(n + 2)
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We get the gradient of bending energy functional ∂E(p)
∂xa

ij
, which is:

K

n−2∑
k+l=0

[ (
n − 2

i − 2, j

)
(

2n − 4
i + k − 2, j + l

) − 2

(
n − 2

i − 1, j

)
(

2n − 4
i + k − 1, j + l

) +

(
n − 2
i, j

)
(

2n − 4
i + k, j + l

) ](n − 2
k, l

)
I
2,0
k,l

+ 2K

n−2∑
k+l=0

[ (
n − 2

i − 1, j − 1

)
(

2n − 4
i + k − 1, j + l − 1

) −

(
n − 2

i − 1, j

)
(

2n − 4
i + k − 1, j + l

) ](n − 2
k, l

)
I
1,1
k,l

− 2K

n−2∑
k+l=0

[ (
n − 2

i, j − 1

)
(

2n − 4
i + k, j + l − 1

) −

(
n − 2
i, j

)
(

2n − 4
i + k, j + l

) ](n − 2
k, l

)
I
1,1
k,l

+ K

n−2∑
k+l=0

[ (
n − 2

i, j − 2

)
(

2n − 4
i + k, j + l − 2

) − 2

(
n − 2

i, j − 1

)
(

2n − 4
i + k, j + l − 1

) +

(
n − 2
i, j

)
(

2n − 4
i + k, j + l

) ](n − 2
k, l

)
I
0,2
k,l

where the constant K = 2n2(n−1)2

(2n−3)(2n−2) , and the notation Ip,q
k,l =

〈
ea, Δp,qPk,l

〉
.

So, the condition for the extremals of bending energy functional is ∂E(p)
∂xa

ij
= 0.

By expanding ∂E(p)
∂xa

ij
, we have:

0 =

n−2∑
k+l=0

[ (
n − 2

i − 2, j

)
(

2n − 4
i + k − 2, j + l

) − 2

(
n − 2

i − 1, j

)
(

2n − 4
i + k − 1, j + l

) +

(
n − 2
i, j

)
(

2n − 4
i + k, j + l

) ](n − 2
k, l

)
Δ

2,0
Pk,l

+ 2

n−2∑
k+l=0

[ (
n − 2

i − 1, j − 1

)
(

2n − 4
i + k − 1, j + l − 1

) −

(
n − 2

i − 1, j

)
(

2n − 4
i + k − 1, j + l

) ](n − 2
k, l

)
Δ

1,1
Pk,l

− 2

n−2∑
k+l=0

[ (
n − 2

i, j − 1

)
(

2n − 4
i + k, j + l − 1

) −

(
n − 2
i, j

)
(

2n − 4
i + k, j + l

) ](n − 2
k, l

)
Δ

1,1
Pk,l

+

n−2∑
k+l=0

[ (
n − 2

i, j − 2

)
(

2n − 4
i + k, j + l − 2

) − 2

(
n − 2

i, j − 1

)
(

2n − 4
i + k, j + l − 1

) +

(
n − 2
i, j

)
(

2n − 4
i + k, j + l

) ](n − 2
k, l

)
Δ

0,2
Pk,l

If denote:

Ak,l
i,j =

i(2n − i − j − k − l − 3)(i2 + ij + ik − il − 3i + 2jk − 2kn − j + k + l + 2)

(n − i − j)(n − i − j − 1)(i + k)(i + k − 1)
+ 1

Bk,l
i,j =

(2n − i − j − k − l − 3)(i2j + i2l + ij2 − iln − 2ij + j2k − jkn)

(n − i − j)(n − i − j − 1)(i + k)(j + l)
+ 1

We can prove the equations (1).

3.2 Example of n = 3

The cubic triangular Bézier surface has only one inner control point P1,1,1:
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Proposition 3.2. The cubic triangular Bézier surface is an extremal of the bend-
ing energy functional with the prescribed border if and only if:

P1,1,1 =
1

12

(
2P0,0,3+3P1,0,2+3P0,1,2−3P0,2,1−3P2,0,1+P0,3,0+4P1,2,0+4P2,1,0+P3,0,0

)

3.3 Bending Energy Mask

If the boundary curves of a Bézier surface are prescribed, then the boundary
control points are fixed. Therefore, the problem of constructing a Bézier surface
is equivalent to compute the inner control points. A simple way to solve the
problem is through a mask.

From the condition in Proposition 3.1 and Proposition 3.2 we can try to
solve a linear system to get minimal bending energy triangular Bézier surface
according to the given exterior control points. The equations are:

12Pi,j,k = 2 Pi+2,j−1,k−1 + 3Pi+1,j,k−1 + 3Pi+1,j−1,k − 3Pi,j−1,k+1 − 3Pi,j+1,k−1

+ Pi−1,j−1,k+2 + 4Pi−1,j,k+1 + 4Pi−1,j+1,k + Pi−1,j+2,k−1 (2)

These equations can be expressed using the asymmetric bending energy mask
shown in Fig. 1.

Fig. 1. Bending energy mask

3.4 Solvability for Linear System

The above linear system (2) tell us that every interior control point can be
represented as a linear combination of its triangular neighbour control points,
that is: Pi =

∑
j∈Ni

λijPj , where Ni denotes 9 neighbour control points for
interior control point Pi.

In order to study the linear system, we introduce some graph theory ter-
minologies. All control points and corresponding neighbour control points can
define a direct graph G as following: V (G) denotes all control points, and E(G)
denotes all ordered control point pairs (Pi, Pj) such that Pj is a neighbour con-
trol point of Pi. As shown in Fig. 2, for every interior control point Pi, we can
easily find a directed path to one boundary control point Pj , i.e. a directed path
Pi = P 1, P 2, P 3, · · · , P m = Pj such that (P k, P k+1) is an ordered control point
pair for k = 1, 2, 3, · · · , m − 1. So all interior control points in the direct graph
G are boundary connected, then we can conclude that the linear system (2) has
a unique solution according to the Floater and Reimers’ sufficient condition in
reference [6].
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Fig. 2. The triangular neighbour control points and directed path (solid line) from

interior control point to one boundary control point

Fig. 3. The triangular Bézier surfaces associated to different boundary curves with

bending energy mask. Left column, the wireframe version of different surfaces. Center

column, the render version of different surfaces. Right column, the curvature version of

different surfaces. Different grayscales on the curvature version are related to different

Gaussian curvatures
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Fig. 4. The triangular Bézier surfaces associated to different boundary curves with

Dirichlet mask

3.5 Examples

The reference [7] assert that whether there is better mask depends on the bound-
ary conditions. In this section, we compare some examples for the cubic trian-
gular Bézier surface case.

We first fix the three boundary curves with its control points, then construct
the surface by computing the inner control point through average mask, the
Laplacian mask, the Dirichlet mask and bending energy mask. Fig. 3 shows
the different borders and the triangular Bézier surfaces constructed by means
of the bending energy mask. Fig. 4 shows the corresponding triangular Bézier
surfaces constructed by means of the Dirichlet mask. Fig. 5 shows the cor-
responding triangular Bézier surfaces constructed by means of the Laplacian
mask.

Table 1. Comparison among different masks

Masks Example 1 Example 2 Example 3
Stretching Bending Stretching Bending Stretching Bending

Average Mask 2.4255 4.3627 3.2814 4.1667 1.3811 11.3149

Laplacian Mask 2.4309 4.5192 3.3004 4.5121 1.3916 10.8962

Dirichlet Mask 2.4158 4.3575 3.2625 5.6250 1.3733 12.9075

Bending Energy Mask 2.4224 3.7650 3.2791 4.1250 1.3963 10.8350
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Fig. 5. The triangular Bézier surfaces associated to different boundary curves with

Laplacian mask

In Table 1, the internal energy of the triangular Bézier surfaces are shown.
From Table 1, we can assert that the internal energy of the triangular Bézier
surfaces depends heavily on the boundary curve conditions. In three examples
associated to different boundary curves with average, Laplacian, Dirichlet and
bending energy mask, the bending energy mask is always the best one, i.e. the
minimal internal energy.

4 Extremals of the Energy Functional for Rectangular
Bézier Surface

4.1 Extremals of the Bending Energy Functional

For rectangular Bézier surface, the bending energy Ebend is bounded from below
because it is defined as integrals of bounded positive functions. Moreover, the
bending energy depends on (n − 1) × (m − 1) inner control points, each point
has three coordinates. Thus, the bending energy for rectangular Bézier surface
can be considered as a functional defined on R3(n−1)(m−1). We can compute the
inner control points by setting the gradient of a real function as zero.

Proposition 4.1. The control points {Pi,j}n,m
i,j=0 is the extremal of the bending

energy functional with the prescribed border if and only if
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0 =
n2(n − 1)2

(2n − 3)(2m + 1)

(
n − 2

i

)(
m
j

) n−2,m∑
k,l=0

(
n − 2

k

)(
m
l

)
(

2n − 4
i + k − 2

)(
2m

j + l

) A
k
n,iΔ

2,0
Pk,l

+
2n2m2

(2n − 1)(2m − 1)

(
n − 1

i

)(
m − 1

j

) n−1,m−1∑
k,l=0

(
n − 1

k

)(
m − 1

l

)
(

2n − 2
i + k − 1

)(
2m − 2

j + l − 1

) B
k
n,iB

l
m,jΔ

1,1
Pk,l

+
m2(m − 1)2

(2n + 1)(2m − 3)

(
n
i

)(
m − 2

j

) n,m−2∑
k,l=0

(
n
k

)(
m − 2

l

)
(

2n
i + k

)(
2m − 4

j + l − 2

) A
l
m,jΔ

0,2
Pk,l (3)

for any i ∈ {1, 2, · · · , n − 1} and j ∈ {1, 2, · · · , m − 1} where the coefficient

Ak
n,i =

nk(n − 1)(k − 1) + i2(n − 2)(n − 3) − i(n − 3)(2kn + n − 2k − 2)
(n − i)(n − i − 1)(2n − i − k − 2)(2n − i − k − 3)

Bk
n,i =

ni − nk − i

(n − i)(2n − k − i − 1)

Remark. The proof of this proposition will be given in the Appendix.

4.2 Example of n = m = 2

The biquadratic rectangular Bézier surface has only one inner control point P1,1:

Proposition 4.2. The biquadratic rectangular Bézier surface is an extremal of
the bending energy functional with the prescribed border if and only if:

P1,1 =
1
44

(
4P0,0 + 7P0,1 + 4P0,2 + 7P1,0 + 7P1,2 + 4P2,0 + 7P2,1 + 4P2,2

)

4.3 Example of n = m = 3

The bicubic rectangular Bézier surface has four inner control points P1,1, P1,2,
P2,1, P2,2. There are four equations corresponding to four inner control points:

Proposition 4.3. The bicubic rectangular Bézier surface is an extremal of the
bending energy functional with the prescribed border if and only if:

P1,1 =
1

48807

(
6746P0,0 + 2910P0,1 + 16572P0,2 − 5336P0,3 + 2910P1,0 + 5352P1,3+
16572P2,0 + 1788P2,3 − 5336P3,0 + 5352P3,1 + 1788P3,2 − 529P3,3

)

P1,2 =
1

48807

(−5336P0,0 + 16572P0,1 + 2910P0,2 + 6764P0,3 + 5352P1,0 + 2910P1,3+
1788P2,0 + 16572P2,3 − 529P3,0 + 1788P3,1 + 5352P3,2 − 5336P3,3

)
P2,1 =

1

48807

(−5336P0,0 + 5352P0,1 + 1788P0,2 − 529P0,3 + 16572P1,0 + 1788P1,3+
2910P2,0 + 5352P2,3 + 6764P3,0 + 2910P3,1 + 16572P3,2 − 5336P3,3

)
P2,2 =

1

48807

(−529P0,0 + 1788P0,1 + 5352P0,2 − 5336P0,3 + 1788P1,0 + 16572P1,3+
5352P2,0 + 2910P2,3 − 5336P3,0 + 16572P3,1 + 2910P3,2 + 6764P3,3

)
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4.4 Bending Energy Mask

From the condition in Proposition 4.1 and Proposition 4.2 we can try to solve a
linear system to get minimal bending energy rectangular Bézier surface according
to the given exterior control points. The equations are:

44Pi,j = 4
(

Pi−1,j−1 + Pi+1,j−1 + Pi−1,j+1 + Pi+1,j+1

)
+ 7
(

Pi,j−1 + Pi−1,j + Pi+1,j + Pi,j+1

)
(4)

These equations can be expressed using the symmetric bending energy mask
shown in Figure 6.

Fig. 6. Bending energy mask

4.5 Solvability for Linear System

The above linear system (4) tell us that every interior control point can be
represented as a convex linear combination of its rectangular neighbour control
points, that is: Pi =

∑
j∈Ni

λijPj , where Ni denotes 8 neighbour control points
for interior control point Pi.

Similar to the triangular case, all control points and corresponding neighbour
control points can define a direct graph G. As shown in Fig. 7, for every interior
control point Pi, we can also easily find a directed path to one boundary control
point Pj , so according to the sufficient condition in reference [6], we can conclude
that the linear system (4) has a unique solution.

4.6 Examples

In this section, we compare some examples for the bi-quadratic rectangular
Bézier surface case.

We first fix the four boundary curves with its control points, then construct
the surface by computing the inner control point through the harmonic mask, the
Laplacian mask, the Dirichlet mask, and bending energy mask. Fig. 8 shows the
different borders and the rectangular Bézier surfaces constructed by means of the
bending energy mask. Fig. 9 shows the corresponding rectangular Bézier surfaces
constructed by means of the Dirichlet mask. Fig. 10 and Fig. 11 shows the
corresponding rectangular Bézier surfaces constructed by means of the Laplacian
mask and harmonic mask respectively.

In Table 2,the internal energy of the rectangular Bézier surfaces are shown.
From Table 2, we can also assert that the internal energy of the rectangular
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Fig. 7. The rectangular neighbour control points and directed path (solid line) from

interior control point to one boundary control point

Fig. 8. The rectangular Bézier surfaces associated to different boundary curves with

bending energy mask. Left column, the wireframe version of different surfaces. Center

column, the render version of different surfaces. Right column, the curvature version of

different surfaces. Different grayscales on the curvature version are related to different

Gaussian curvatures

Bézier surfaces depends heavily on the boundary curve conditions. In three exam-
ples associated to different boundary curves with harmonic, Laplacian, Dirichlet
and bending energy mask, the bending energy mask is always the best one, i.e.
the minimal internal energy.
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Fig. 9. The rectangular Bézier surfaces associated to different boundary curves with

Dirichlet mask

Fig. 10. The rectangular Bézier surfaces associated to different boundary curves with

Laplacian mask

5 Conclusion

We discuss the variational problem in this paper: Given the boundary control
points of a triangular or a rectangular control net, find out the inner ones in
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Fig. 11. The rectangular Bézier surfaces associated to different boundary curves with

harmonic mask

Table 2. Comparison among different masks

Masks Example 1 Example 2 Example 3
Stretching Bending Stretching Bending Stretching Bending

Harmonic Mask 0.8200 1.6320 0.9760 2.4169 1.1927 6.2698

Laplacian Mask 0.8280 1.6080 1.0124 2.3076 1.2696 6.0391

Dirichlet Mask 0.8190 1.7100 0.9714 2.7722 1.1831 7.0194

Bending Energy Mask 0.8242 1.5964 0.9950 2.2545 1.2327 5.9273

such a way that the resulting triangular or rectangular Bézier surface have
the minimal energy among all the Bézier surfaces with the same prescribed
boundaries.

We propose two new masks related to the two variational problems. One
is related to the triangular Bézier surface of minimal bending energy; and the
other is associated to the rectangular Bézier surface of minimal bending en-
ergy. Experimental results show that the results obtained by using our masks
are better than those obtained by using harmonic, Laplacian and Dirichlet
masks.
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tional 973 Fundamental Science Programs (973 program) (2002CB312101) and
National Natural Science Foundation (NSFC) (60373036,60333010).
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A Appendix: Proof of Proposition 4.1

For any a ∈ {1, 2, 3}:
∂E(p)

∂xa
ij

= 2

∫
Ω

(
〈∂Puu

∂xa
ij

, Puu〉 + 2〈∂Puv

∂xa
ij

, Puv〉 + 〈∂Pvv

∂xa
ij

, Pvv〉
)
dudv

Similar to the triangular case, we use the difference operators and compute
the following partial derivatives:

Puu(u, v) = n(n − 1)
n−2∑
k=0

m∑
l=0

Bn−2
k (u)Bm

l (v)Δ2,0Pk,l

Puv(u, v) = nm

n−1∑
k=0

m−1∑
l=0

Bn−1
k (u)Bm−1

l (v)Δ1,1Pk,l

Pvv(u, v) = m(m − 1)
n∑

k=0

m−2∑
l=0

Bn
k (u)Bm−2

l (v)Δ0,2Pk,l

∂Puu

∂xa
ij

= n(n − 1)
(

Bn−2
i−2 (u) − 2Bn−2

i−1 (u) + Bn−2
i (u)

)
Bm

j (v)ea

∂Puv

∂xa
ij

= nm
(

Bn−1
i−1 (u) − Bn−1

i (u)
)(

Bm−1
j−1 (v) − Bm−1

j (v)
)

ea

∂Pvv

∂xa
ij

= m(m − 1)Bn
i (u)

(
Bm−2

j−2 (v) − 2Bm−2
j−1 (v) + Bm−2

j (v)
)

ea

where ea(a ∈ {1, 2, 3}) denotes the ath vector of the canonical basis.

So, the differential of the bending energy functional:

∂E(p)

∂xa
ij

= 2

[
n(n − 1)

∫
Ω

(
Bn−2

i−2 (u) − 2Bn−2
i−1 (u) + Bn−2

i (u)
)
Bm

j (v)〈ea, Puu〉dudv

+ 2nm

∫
Ω

(
Bn−1

i−1 (u) − Bn−1
i (u)

)(
Bm−1

j−1 (v) − Bm−1
j (v)

)
〈ea, Puv〉dudv

+ m(m − 1)

∫
Ω

Bn
i (u)

(
Bm−2

j−2 (v) − 2Bm−2
j−1 (v) + Bm−2

j (v)
)
〈ea, Pvv〉dudv

]

By applying the following identity of Bernstein Polynomials and integral
equation:

Bn
i (u)Bn

j (u) =

(
n
i

)(
m
j

)
(

n + m
i + j

) Bn+m
i+j (u),

∫ 1

0

Bn
i (u)du =

1
n + 1

Then, we can get the condition for the extremals of bending energy functional:
∂E(p)
∂xa

ij
= 0. It is:
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0 = K1

n−2,m∑
k,l=0

[ (
n − 2
i − 2

)
(

2n − 4
i + k − 2

)(
2m
j + l

) −2

(
n − 2
i − 1

)
(

2n − 4
i + k − 1

)(
2m
j + l

) +

(
n − 2

i

)
(

2n − 4
i + k

)(
2m
j + l

)]H2,0
k,l

+K2

n−1,m−1∑
k,l=0

[ (
n − 1
i − 1

)(
m − 1
j − 1

)
(

2n − 2
i + k − 1

)(
2m − 2
j + l − 1

) −

(
n − 1
i − 1

)(
m − 1

j

)
(

2n − 2
i + k − 1

)(
2m − 2
j + l

)]H1,1
k,l

−K2

n−1,m−1∑
k,l=0

[ (
n − 1

i

)(
m − 1
j − 1

)
(

2n − 2
i + k

)(
2m − 2
j + l − 1

) −

(
n − 1

i

)(
m − 1

j

)
(

2n − 2
i + k

)(
2m − 2
j + l

)]H1,1
k,l

+K3

n,m−2∑
k,l=0

[ (
m − 2
j − 2

)
(

2n
i + k

)(
2m − 4
j + l − 2

) − 2

(
m − 2
j − 1

)
(

2n
i + k

)(
2m − 4
j + l − 1

) +

(
m − 2

j

)
(

2n
i + k

)(
2m − 4
j + l

)]H0,2
k,l

where the coefficients: K1 = n2(n−1)2

(2n−3)(2m+1)

(
m
j

)
, K2 = 2n2m2

(2n−1)(2m−1) ,

K3 = m2(m−1)2

(2n+1)(2m−3)

(
n
i

)
, and the notation Hp,q

k,l =
(

n − p
k

)(
m − q

l

)
Δp,qPk,l.

If denote:

Ak
n,i =

nk(n − 1)(k − 1) + i2(n − 2)(n − 3) − i(n − 3)(2kn + n − 2k − 2)
(n − i)(n − i − 1)(2n − i − k − 2)(2n − i − k − 3)

Bk
n,i =

ni − nk − i

(n − i)(2n − k − i − 1)

We can prove the equations (3).
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Abstract. The construction of a C1 interpolant to scattered data is
considered in which the interpolant is positive everywhere if the origi-
nal data are positive. This study is motivated by earlier work in which
sufficient conditions are derived on Bézier points in order to ensure that
surfaces comprising cubic Bézier triangular patches are always positive.
In the current work, simpler and more relaxed conditions are derived on
the Bézier points. The gradients at the data sites are then calculated to
ensure that these conditions are satisfied. Each triangular patch of the
interpolating surface is formed as a convex combination of three cubic
Bézier triangular patches. Its construction is local. A number of examples
are presented.

1 Introduction

In recent years, a considerable number of research articles have been published
that focus on shape preserving interpolation, both for curves and surfaces. The
properties that are most often used to quantify “shape” are convexity, mono-
tonicity (for non-parametric data) and positivity. It is the last of these that is
of interest in this paper, namely if all the sampled data are positive, then the
interpolating curve or surface should be positive everywhere.

The need to preserve positivity can be readily seen in the area of scientific
visualization. Scientific visualization provides a means of understanding vari-
ous physical phenomena, from limited or incomplete information. The data that
are known represent only a sample and may not be sufficient to let one visual-
ize the entire entity. As such one uses interpolation to construct an empirical
model which matches the data samples and approximates the unknown entity
at intermediate locations. Preserving positivity is particularly important when
visualizing a physical entity that cannot possibly be negative. An example is

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 336–349, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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included later in this paper that interpolates rainfall data. Examples of studies
in the area of positivity-preservation include [3] which considers curves and [2]
which considers surfaces. More references on this topic are included in these
studies.

The problem that we are concerned with is the interpolation of scattered
data. This problem occurs in many practical situations where data are gathered
experimentally or via simulation studies. A review of this area of research may be
found in [11]. One approach to this problem uses the idea of “meshless” surfaces
such as radial basis functions and Shepard-type methods. A second approach
triangulates the data points, leading to a piecewise construction of the surface.
Constraining such surfaces to be positive everywhere has received less attention
compared with preserving positivity for curves and for surfaces that interpolate
gridded data. However, the reader may refer to [14], [15] with regard to meshless
surfaces, and [1], [4], [12], [13] for triangulated surfaces. It is the latter approach
that is of interest in this paper in which we follow a similar approach to the work
described in [4].

Thus we may describe the problem as follows: given functional data

(xi, yi, zi), i = 1, . . .N, where zi ≥ 0 ∀ i,

we wish to construct a C1 surface z = F (x, y) such that

zi = F (xi, yi), i = 1, . . .N, and F (x, y) ≥ 0 ∀ x, y.

In both this paper and that of [4], the interpolating surface comprises cubic
Bézier triangular patches with sufficient conditions imposed on the ordinates of
the Bézier control points in each triangle to guarantee preservation of positiv-
ity. The derivatives at the data points are specified to be consistent with these
conditions. The main difference between this work and that of [4] is the way in
which the Bézier ordinates are constrained. Compared with the work of [4], we
offer more relaxed sufficient conditions that are easier to compute. These are
derived in detail in Section 2 of this paper.

Details of the algorithm for generating the surface are given in Section 3. A
brief summary is as follows:

1. triangulate the domain
2. specify derivatives at the data points
3. assign Bézier ordinate values for each triangular patch
4. generate the triangular patches of the surface.

Section 4 discusses results obtained using the scheme. The paper finishes with
a summary and a proposal for future work.

The reader should note that in general we use the term ‘positivity’ to refer
to ‘greater than or equal to zero’, rather than the more rigorous but somewhat
awkward ‘non-negativity’. However, note that the conditions that are derived in
Section 2 consider the case in which the given data are strictly positive. The way
in which the scheme deals with general positive data is mentioned at the end of
Section 2.
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Fig. 1. Relative locations of Bézier ordinates for P (u, v, w)

2 Sufficient Positivity Conditions for a Cubic Bézier
Triangular Patch

Consider a triangle T, with vertices A, B, C, and barycentric coordinates u, v,
w such that any point V on the triangle can be expressed as

V = uA + vB + wC

where u + v + w = 1 and u, v,w≥ 0.

A cubic Bézier triangular patch P on T is defined as

P (u, v,w) = u3b300 + v3b030 + w3b003 + 3u2vb210 + 3u2wb201 + 3v2ub120

+3v2wb021 + 3w2ub102 + 3w2vb012 + 6uvwb111 (1)

where brst are the Bézier ordinates of P (see Figure 1).
We assume that the Bézier ordinates at the vertices are strictly positive,

i.e. b300, b030, b003 > 0. We shall derive sufficient conditions on the remaining
Bézier ordinates for the entire Bézier patch to be positive. In [4], such sufficient
conditions are based on the univariate results on positivity in [8]. The following
is a proposition from [4].

Proposition 1. Consider the cubic Bezier triangular patch P (u, v,w) with
b300 = αl, b030 = βl, b003 = l, l > 0 and α ≥ β ≥ 1. If b210, b201, b120, b021, b102,
b012, b111 ≥ −l/3a, where a is the unique solution in (1, 8/3] of the equation
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16− 8α + (72α− 27α2)a + 54α2a2 − 27α2a3 = 0

then P (u, v,w) ≥ 0 ∀ u, v,w ≥ 0, u + v + w = 1.
The scheme constructs an interpolating surface comprising cubic Bézier tri-

angular patches such that the Bézier ordinates satisfy Proposition 1 in each
triangle.

Now suppose l = 1, α = β > 1, and suppose α → ∞. In order to guarantee
positivity, using Proposition 1, the common lower bound of the seven Bézier
ordinates approaches −1/3. It will never be less than this value. We will see that
by choosing this lower bound in a different and simpler way, the magnitude of
this lower bound can become infinitely large in the above case. We now consider
this alternative scheme.

Let A = b300, B = b030, C = b003, and A,B,C > 0. Our approach is to find
the minimum value F (A,B,C) such that if all the Bézier ordinates, apart from
b300, b030, b003, have the value F (A,B,C), then P (u, v,w) = 0.

Apart from the Bézier points at the vertices, we assume that all the Bézier
ordinates have the same value −t < 0 (where t > 0). Thus, (1) becomes

P (u, v,w) = Au3 + Bv3 + Cw3

−3t(u2v + u2w + v2u + v2w + w2u + w2v + 2uvw)
= Au3 + Bv3 + Cw3 − t(1− u3 − v3 − w3)
= (A + t)u3 + (B + t)v3 + (C + t)w3 − t (2)

Clearly when t = 0, P (u, v,w) > 0. As t increases, P (u, v,w) decreases. We are
interested in finding the value t = t0 when the minimum value of P (u, v,w) = 0.

Assume t is fixed. At the minimum value of P (u, v,w) we know that:

∂P

∂u
− ∂P

∂v
= 0 and

∂P

∂u
− ∂P

∂w
= 0

Thus
∂P

∂u
=

∂P

∂v
=

∂P

∂w
(3)

From (2) we have

∂P

∂u
= 3(A + t)u2,

∂P

∂v
= 3(B + t)v2,

∂P

∂w
= 3(C + t)w2.

Thus, substituting into (3) we obtain:

u2

v2
=

B + t

A + t
and

u2

w2
=

B + t

C + t

Hence:

u2 : v2 : w2 =
1

A + t
:

1
B + t

:
1

C + t
.
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Remembering that u + v + w = 1 we obtain:

u =
1√
A+t

1√
A+t

+ 1√
B+t

+ 1√
C+t

v =
1√

B+t
1√
A+t

+ 1√
B+t

+ 1√
C+t

w =
1√

C+t
1√
A+t

+ 1√
B+t

+ 1√
C+t

.

From the above, and (2), the minimum value of P (u, v,w) is

P (u, v,w) =
1

( 1√
A+t

+ 1√
B+t

+ 1√
C+t

)2
− t

We now need to choose a value of t = t0 so that this minimum value is zero.
Noting that t > 0, P (u, v,w) = 0 when

1√
A
t + 1

+
1√

B
t + 1

+
1√

C
t + 1

= 1

If we define s0 = 1
t0

, it follows immediately that s0 is the solution of

G(s) = 1, s ≥ 0 (4)

where
G(s) =

1√
As + 1

+
1√

Bs + 1
+

1√
Cs + 1

(5)

Recalling that A,B,C > 0, it is easy to show that for s ≥ 0, G′(s) > 0,
G′′(s) < 0. In addition, let X = max(A,B,C) and Y = min(A,B,C). Clearly

3√
Xs + 1

≤ G(s) ≤ 3√
Y s + 1

In particular

G(
8
X

) ≥ 1 and G(
8
Y

) ≤ 1.

Figure 2 shows the form of G(s), s ≥ 0. Also shown are the relative locations
of 8/X, 8/Y and s0.

We now have the following proposition, as an alternative to Proposition 1.

Proposition 2. Consider the cubic Bézier triangular patch P (u, v,w) with
b300 = A, b030 = B, b003 = C, A,B,C > 0. If b210, b201, b120, b021, b102, b012,
b111 ≥ −t0, where t0 = 1

s0
is the unique solution of (4), (5) then P (u, v,w) ≥

0 ∀ u, v,w ≥ 0, u + v + w = 1.
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Fig. 2. Function G(s) for s ≥ 0

These more relaxed sufficient conditions, compared to those in Pro-
position 1, prescribe lower bounds for the Bézier ordinates. To obtain the value
of s0 for given values of A,B,C we can use a simple iterative scheme. Since
we need to calculate the root of an equation that will act as a lower bound on
the Bézier ordinates, in choosing an iterative scheme we must ensure one-sided
convergence, ie. that s0 is approached from above. The convexity of G(s) (see
Figure 2) means that this can be achieved using the method of false-position [5].
An initial estimate for the root will be the value of s for which the line joining
8/X and 8/Y has the value 1.

We suggest that this is simpler than calculating the roots of the cubic ex-
pression in Proposition 1. In addition, the scheme in [4] was considered earlier
in cases in which l = 1, α = β > 1 and α → ∞. It was noted that the lower
bound for the Bézier ordinates approaches −1/3. Consider the same case with
this alternative scheme. Let A = B > C = 1. We have,

G(s) =
2√

As + 1
+

1√
s + 1

Therefore, as A→∞,

G(s)→ 1√
s + 1

.

Hence, s0 → 0 and therefore t0 →∞. Thus the ordinate values are unbounded.
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Note that, in practice, if any of the values of A, B or C are zero (i.e. the given
data are positive but not strictly positive), t0 is assigned the value zero for that
triangle.

3 Construction of Positivity Preserving Interpolating
Surface

Having established sufficient conditions on the Bézier points as described above,
we are now able to construct the interpolating surface. Our approach is very
similar to that of [4] and a brief overview is given in the introduction. For the
sake of completeness we give more details in this section, but the reader can
refer to [4] for a fuller explanation.

As already noted, the surface comprises cubic Bézier triangular patches each
of which is guaranteed to remain positive. Essentially, the construction process
consists of the following steps:

1. Triangulate the domain data (xi, yi), i = 1, . . .N .
2. Initialise partial derivatives at each data point, then modify them (if neces-

sary) to be consistent with the positivity constraints imposed on the Bézier
ordinates.

3. For each domain triangle:
– Assign boundary Bézier ordinate values using the partial derivative val-

ues from step 2.
– Calculate three triangular patches using the boundary ordinates from

step 3, and an inner Bézier ordinate value that satisfies the positivity
constraint and ensures C1 continuity across one of the triangle bound-
aries.

– Calculate final triangular patch as a blend of these three patches

We now give further details of each of these steps.

3.1 Triangulation

Given the data values to be interpolated, let D be the convex hull of the points
Ui = (xi, yi), i = 1, . . .N . Delaunay triangulation [6] is used to triangulate D,
with each Ui, 1 ≤ i ≤ N the vertex of a triangle.

3.2 Derivative Specification

For the interpolating surface F (x, y), values for the partial derivatives Fx, Fy are
required at (xi, yi), i = 1, . . .N . Estimation of these derivatives is done by using
the method proposed in [9]. Using these values, the derivative along a triangle
edge can be derived. For example, suppose ejk is the edge connecting (xj , yj) to
(xk, yk) for triangular patch P , then:

∂P

∂ejk
= (xk − xj)

∂F

∂x
+ (yk − yj)

∂F

∂y
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The derivatives are used to assign initial values to the Bézier ordinates located
on each triangle boundary. Thus, for example, for an arbitrary triangular patch
P we have:

b300 = F (V1), b210 = F (V1) +
1
3

∂P

∂e3
(V1)

where e3 is the edge from vertex V1 to vertex V2. However, for a triangle P , the
initial estimate for each edge ordinate may not satisfy the positivity condition
for P . If it does not, the magnitudes of Fx, Fy at the vertices need to be reduced
so that the condition is satisfied. Reduction of the derivatives at a vertex V is
achieved by multiplying each derivative at that vertex by a scaling factor α,
where 0 < α < 1. The value of α is obtained by considering all triangles that
meet at vertex V , and obtaining the smallest value of α that will guarantee
satisfaction of the positivity condition for all these triangles: i.e. so that, for
example,

(b210)j = F (V1) +
α

3
∂P

∂(e3)j
(V1) ≥ −(t0)j

where subscript j represents quantities corresponding to triangle j. Having ad-
justed these derivatives, if necessary, the Bézier ordinates are recalculated using
the formulae above.

For each triangle, the inner Bézier point remains to be calculated. This needs
to be done in order to guarantee preservation of positivity and to ensure C1

continuity across patch boundaries. We adopt the approach presented in [7]
which guarantees C1 continuity and has cubic precision. In this scheme each
triangular surface patch is a convex combination of three cubic Bézier patches.
The work of [4] also adopts this approach, with a small difference in the form of
the convex combination used. The boundary ordinates for all three patches are
the same and calculated as above.

Suppose therefore that each triangular surface patch P is a convex combina-
tion of the triangular patches P i, i = 1, 2, 3. Each P i may have a different inner
Bézier ordinate bi

111, i = 1, 2, 3. Initial values for bi
111, i = 1, 2, 3 are calculated

from a system of equations that relates the Bézier ordinates for two triangles
that share a common edge. See equations (9)-(12) of [7], or (3.4)-(3.7) of [4].
Modifications to this approach are required for triangles that have an edge on
the boundary of the domain D: these are documented in both [7] and [4].

If an inner Bézier point bi
111, i = 1, 2, 3 fails to satisfy the positivity condition

it is modified according to Proposition 2. The inner Bézier point of the adjacent
triangle is also adjusted in order to maintain C1 continuity and cubic precision.

3.3 Triangular Patch Generation

For each patch P , once all the Bézier ordinates have been assigned for the tri-
angular patches P i, i = 1, 2, 3, the final surface can be generated. In particular,
for barycentric coordinates u, v,w:

P = c1P
1 + c2P

2 + c3P
3
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where

c1 =
vw

vw + wu + uv
, c2 =

wu

vw + wu + uv
, c3 =

uv

vw + wu + uv

This is the same formulation as used in [7], although slightly different to that
used in [4].

4 Examples

We present output from three examples in this section. The first example consid-
ers a situation in which there is a significant difference in the bounds that must
be satisfied in order to preserve positivity, compared with the method of [4]. The
data to be interpolated comprises four data points, namely:

x y z
0.1 0.1 1× 108

0.1 0.9 1× 108

0.9 0.1 0.1
0.3 0.35 1.0

As noted in Section 2, for the triangle with the first two data points as
vertices, the current scheme allows its Bézier ordinates to be relatively large and
negative while still guaranteeing positivity of the surface. The linear interpolant
to the data is shown in Figure 3 and the corresponding positivity preserving
surface in Figure 4.

For this particular data set the Bézier ordinates referred to above are bounded
below by -183.65. In the case of [4], the ordinate values would be bounded below
by −1/3.

The second example interpolates one day’s rainfall data from the Arthur’s
Pass region of the South Island of New Zealand. The data to be interpolated
comprises five data points, namely:

Longitude Latitude Rainfall(mm)
171.567 -42.950 4.6
171.672 -43.470 0.1
171.946 -43.529 0.2
171.800 -43.800 0.4
171.208 -44.035 0.2

The linear interpolant to the data is shown in Figure 5 and the corresponding
positivity preserving surface in Figure 6.

The final example comprises 36 data points sampled from the well-known
data set taken from [10].

S(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.0 if (y − x) ≥ 0.5
2(y − x) if 0.5 ≥ (y − x) ≥ 0.0
cos(4π

√
(x−1.5)2+(y−0.5)2)+1

2 if (x− 1.5)2 + (y − 0.5)2 ≤ 1
16

0 otherwise
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Fig. 3. Linear interpolant for data with large differences in vertex ordinates
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Fig. 4. Positivity-preserving surface for data with large differences in vertex ordinates

The function S(x, y) is shown in Figure 7. Notice that it has areas where it
is exactly zero, and a peak and upper shelf where it has a value of 1.0. A linear
interpolant to the sampled data is shown in Figure 8. Output from the positivity-
preserving scheme of this study is shown in Figure 9. It clearly shows that the
surface remains positive everywhere. However the output also shows unwanted
oscillations in the region of the upper shelf. There is nothing in the current
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Fig. 5. Linear interpolant to rainfall data
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Fig. 6. Positivity-preserving interpolant to rainfall data

scheme to deal with this, however it would be a straightforward extension of the
method (as is done in [4]) to prevent the surface exceeding the upper bound of
1.0 in this region.
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Fig. 7. Lancaster and Salkauskas function
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Fig. 8. Linear interpolant for data sampled from Lancaster and Salkauskas function

5 Conclusions

In this study, we have considered the generation of non-parametric surfaces that
interpolate positive scattered data. The surfaces comprise piecewise cubic Bézier
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Fig. 9. Positivity-preserving interpolant for data sampled from Lancaster and Salka-

uskas function

triangles. The approach is similar to that of [4], but imposes more relaxed and
simpler conditions on the Bézier ordinates. This paper considers positivity only,
however it could easily be extended to range restricted scattered data interpo-
lation in an analogous manner to that of [4].

Both this scheme (and that of [4]) suffer from the constraint that in order
to prevent a surface patch becoming negative all Bézier points within the corre-
sponding triangle (except those at the vertices) may be assigned the same value
according to Proposition 2. This makes the problem tractable and achieves the
desired outcomes. More flexibility would be achieved however if they could be
adjusted independently while still ensuring positivity. Preliminary investigations
indicate that this approach leads to an optimisation problem, however the over-
all solution procedure is significantly more complex than that described in this
paper. A study of this approach is ongoing.
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Abstract. Certain problems in subdivision surfaces have provided the
incentive to look at artifacts. Some of these effects are common to all
box-spline surfaces, including the tensor product B-splines widely used
in the form of NURBS, and these are worthy of study. Although we use
the subdivision form of box- and B-splines as the mechanism for this
study, and also apply the same mechanism to the subdivision schemes
which are not box-splines, we are looking at problems which are not
specific to subdivision surfaces, but which afflict all Box- and B-splines.

1 Introduction

The paper starts with introductory material: in the remainder of this section
terms used are defined, and prior knowledge identified; the broad approach is
set out, and notation defined. Then follows a section on the longitudinal artifacts
of curves, looking in detail at the effects of even and odd numbers of B-spline
factors, and then at the way the same techniques can be applied to subdivision
schemes which are not B-splines. Finally a similar section on surfaces, showing
that longitudinal and lateral artifacts are parts of the same story.

1.1 Definitions

An artifact is defined to be any feature of the surface which cannot be removed
by movement of the control points. Whether it is desirable or not is not the
question.

This implies that the surface contains spatial frequencies above the Shan-
non [6] limit relative to the density of the control mesh, because features of
spatial frequency below this limit are removable by movement of the control
points.

It is convenient to consider two sub-classes, longitudinal artifacts where the
artifact spatial frequencies have the same direction across the surface as the
intended shape, and lateral artifacts where the artifact spatial frequencies have
a different direction. For curves only the longitudinal artifacts can occur.

Longitudinal artifacts are generally quite mild in effect, merely slightly alter-
ing the shape of the profiles involved. In Figure 1, the two loops are exactly the
same shape—a cyclic cubic B-spline with four control points at the corners of a
square—but one has been rotated through 45 degrees so that the non-circularity
is readily evident.

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 350–363, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Two copies of a cyclic cubic B-spline with just four control points. The difference

between the two shapes is due to the different phase of the longitudinal artifact because

one of the shapes is rotated through 45 degrees

Lateral artifacts are best known as the ‘dinosaur back’ produced when a more-
or-less extruded feature is run in a direction not aligned with the underlying grid.
(Or when the grid is not aligned with the local principal curvatures.)

Both were identified first in the context of subdivision surfaces, (see Sabin
and Barthe [4]) and we shall use the subdivision approach to splines to analyse
them, but they are equally applicable to B-spline surfaces used explicitly.

1.2 Prior Knowledge

Longitudinal artifacts are present in all splines. They reduce with control point
density, at a rate which depends on the degree. They are more familiarly thought
of in terms of the approximation error, which is of order O(hd+1) where d is the
degree of the polynomial pieces, meeting with continuity of d − 1th derivative
at the knots. This is closely related to the fact that the splines contain the
polynomials of degree d as their precision set.

Thus although the approximation error drops quickly with the control point
density, especially for high degrees, some artifact component is always present.
In the curve and surface design context we do not want to be forced to use dense
control points, and so the factor multiplying the O(hd+1) is also highly relevant.

Lateral artifacts again afflict all spline surfaces, except that there can be cer-
tain directions in which features intended to be more or less extruded can be
run safely, without generating lateral artifacts. Using subdivision-coloured spec-
tacles, we can see that these directions are exactly those in which the subdivision
mask has at least one 1 + z factor. The Peters-Shiue 4-3 subdivision scheme [3]
is a box-spline with two 1 + z factors in each of the main parametric directions
and one in each of the two diagonal directions, and the fact that it can support
extruded features running diagonally is one of its main advantages.

If there are directions with two 1 + z factors, then the cross-section of an ex-
truded feature can grow or shrink linearly along the feature without corruption.
Features in directions with three or more can vary quadratically etc.

This has all been obvious enough in the tensor product B-spline context that
no analysis seems to have been published. This has not stopped attempts at the
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building of surface editing packages which can introduce features running skew to
the safe directions by modifying control points using some ‘hyper basis’ function.

It is also reasonably widely understood that when the surface is constructed
as the limit surface of a subdivision process, most of the damage is done at the
first step.

1.3 The Fourier Approach

The approach we take here is to examine the response of the configuration (i.e.
the polygon or polyhedron) after one step to that before the step. Because we
assume linearity of the system we can separate the initial polyhedron into compo-
nents of different spatial frequency, and look at the response of each component
as a function of its frequency. This is in some ways equivalent to looking at the
approximation error as a function of the maximum spacing between two data
points: an early exploration of this route appears in [5].

1.4 Notation

The notation T x, IR → C denotes the function eiπx = cos(πx) + i sin(πx). Su-
perscript notation retains the concept of exponentiation. Although this could be
interpreted as T x = eiπx = (eiπ)x so that T = eiπ = −1 and T x = −1x, it is
more relevant to think of T as a function, than as a number.

The properties of T x which are used are

T 0 = 1,
T 1/2 = i,

T−1/2 = −i,

T 1 = T−1 = −1,

T x+y = T xT y,

T x + T−x = 2 cos(πx),
T x − T−x = 2i sin(πx).

2 Curves

2.1 Matrices and z-Transforms

We have two ways of looking at univariate subdivision schemes. One is via the z-
transform, the other via subdivision matrices. Analysis of longitudinal artifacts
has exposed a relationship between the two.

The subdivision matrix is applied to a vector of points at old places, which
(in a binary scheme) are at alternate new places, say the even places. When we
convolve with the mask, we can regard the summation of masks times old points
as actually being summation of masks with old points at the even places, and
with zero values at the intervening odd places.

We can then look at the matrix as being the product of a circulant matrix
with unit slope, with a standard matrix with unit values on a diagonal having
slope = −2:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
c a
b b
a c a

b b
a c a

b b
a c

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
c b a
b c b a
a b c b a

a b c b a
a b c b a

a b c b
a b c

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
1
0 0
0 1

0 0
1
0 0

1
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We call the circulant matrix the filter matrix and the steep diagonal the
sampling matrix. In fact it is more convenient to multiply the sampling matrix
by 2 and divide the filter matrix by 2, so that the latter has the property that
its rows sum to unity.

All circulant matrices have a unique (up to a scaling) factorisation into cir-
culant factors (see Davis [1–page 68]), and these factors turn out to have rows
(or columns) which are exactly the factors of the z-transform. If we also require
that all factors have the property that the rows sum to unity the factorisation
is unique. These factors commute, and so we can take them in any sequence.

Because of the significance of the (1+z) factors seen through the z-transform
telescope, we see that the filter matrix can be factorised into a number of factors
equal to

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
1 1

1 1
1 1

1 1
1 1

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which we call the smoothing matrices, multiplied by some further factor, which
we call the kernel, which may or may not have a further factorisation, but cer-
tainly has no further 1 + z factors. The kernel and the smoothing matrices all
have the property that the rows sum to unity. B-splines have only smoothing
factors, the kernel being an identity matrix.

This set of matrices can then be applied (actually or theoretically) to the
result of multiplying the configuration by the sampling matrix in any order. We
can choose whether to regard the kernel as the leftmost factor (applied last, to
the result of smoothing the sampled original data) of the circulant part, or as the
rightmost (applied first to the sampled data which is then smoothed). It does
not matter: these matrices commute.

We can now address the two important questions concerning the longitudinal
artifact. How rapidly does the longitudinal artifact die away as the sampling
density is increased? How large is it at any given sampling density? The latter
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0 1 2
Fig. 2. Input values Dj with a frequency ω

is particularly important in practice, because we explicitly want to be able to
sample as sparsely as possible.

2.2 The Effect of the Sampling Matrix

This is very simple. The result of multiplying the original sequence by the sam-
pling matrix is to produce a new sequence with the original values doubled and
zero values inserted in between.

In order to analyse the behaviour we let the original data, Dj , where j counts
through the original control points, be sampled from a sine wave of frequency ω,
measured in units of complete cycles per original vertex (the reciprocal of vertices
per cycle). An actual data set can be regarded as the sum of such components,
and by linearity the effect on the total is the sum of the effects on the separate
spatial frequency components.

The magnitude of ω is less than 1/2 by the Shannon limit, because we need at
least two control points per cycle to define the variation, and typically ω ≤ 1/4,
assuming that there are reasonably about four control points per cycle. (Current
NURBS practice uses far more and so ω is even smaller.) Then multiplication
by the sampling matrix gives the sequence S, where

S2j = 2Dj = 2e2iπωj = 2 (cos(2πωj) + i sin(2πωj)) = 2T 2ωj)

S2j+1 = 0

which can be written more concisely as

Sp = 2Tωp(1 + cos(πp))/2, p ∈ ZZ
or as Sp = Tωp

(
1 + (T p + T−p)/2

)
where p counts through the control points after refinement.

In general we expect, by the symmetry of the situation, to see that after any
amount of smoothing the result R will be of the form

Rp = T 2ωp
(
α + β(T p + T−p)/2

)
= αT 2ωp + β(T (2ω+1)p + T (2ω−1)p)/2
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0 1 2 3 4
Fig. 3. Samples Sp with intermediate zeroes

where the symmetry of the β terms is derived from the mirror symmetry of
the mask. We call the first term the signal term, the second the artifact term,
because the change in α can be compensated for by just scaling the original
polygon; the presence of non-zero β cannot. For the unfiltered signal, Rp = Sp

so that initially α = β = 1. Each factor in the filter matrix then affects the
values of α and β by multiplying them by some factors depending on the value
of ω.

The question is then to see what effect a single [1 1]/2 matrix has on the
values of α and β. However, because it turns out that the square of this factor
has a simpler effect, we look first at the effect of the square, a [1 2 1]/4 matrix.

B-splines of odd degree have an even number of [1 1]/2 factors and can be
understood solely in terms of [1 2 1]/4 matrices. Those of even degree can be
understood in terms of a number of [1 2 1]/4 matrices followed by a single
[1 1]/2 matrix.

2.3 The Effect of a [1 2 1]/4 Matrix

Our original samples, with the zeroes in between, can be described as

Sp = Tωp + Tωp
(
T p + T−p

)
/2

Consider first the signal term, Tωp. The convolution of this with [1 2 1]/4 is(
Tω(p−1) + 2Tωp + Tω(p+1)

)
/4

=
(
TωpT−ω + 2Tωp + TωpT+ω

)
/4

= Tωp
(
T−ω + 2 + T+ω

)
/4

= Tωp (2 + 2 cos(πω)) /4
= Tωp cos2(πω/2).

Thus α is multiplied by cos2(πω/2).
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Now consider the artifact term, Tωp (T p + T−p) /2. The convolution of this
with [1 2 1]/4 is(

T ω(p−1)(T p−1 + T −(p−1)) + 2T ω(p)(T p + T −(p)) + T ω(p+1)(T p+1 + T −(p+1))
)

/8

=
(
T ωpT −ω(T p−1 + T −(p−1)) + 2T ωp(T p + T −(p)) + T ωpT ω(T p+1 + T −(p+1))

)
/8

= T ωp
(
T −ω(T p−1 + T −(p−1)) + 2(T p + T −(p)) + T ω(T p+1 + T −(p+1))

)
/8

= T ωp
(
T −ω(T pT −1 + T −pT −1) + 2(T p + T −(p)) + T ω(T pT+1 + T −pT −1)

)
/8

Substituting for T 1 = T−1 = −1 this becomes

Tωp
(
T−ω(−T p − T−p) + 2(T p + T−(p)) + Tω(−T p − T−p)

)
/8

= Tωp
(
+T p(2− Tω − T−ω) + T−p(2− Tω − T−ω)

)
/8

= Tωp(T p + T−p)(2− Tω − T−ω)/8
= Tωp(T p + T−p)(2− 2 cos(πω))/8
= Tωp(T p + T−p) sin2(πω/2)/2

Thus β is multiplied by sin2(πω/2).
This is all consistent with the classical results that for B-splines of odd degree,

which have an even number d+1 of 1+z factors in their mask, the approximation
errors from the artifact part reduce as O(ωd+1), while those from the signal part
remain at O(ω2). If ω is measured in samples per cycle, it is exactly analogous
to the classical h (see [4] for an earlier exploration of this).

2.4 The Effect of a [1 1]/2 Matrix

Our original samples, with the zeroes in between, can be described as

Sp = Tωp + Tωp
(
T p + T−p

)
/2

Consider first the signal term, Tωp. The convolution of this with [1 1]/2 is(
Tω(p−1/2) + Tω(p+1/2)

)
/2

=
(
TωpT−ω/2) + TωpT+ω/2)

)
/2

= Tωp
(
T−ω/2) + T+ω/2)

)
/2

= Tωp cos(πω/2)

Thus α is multiplied by cos(πω/2).
Now consider the artifact term, Tωp (T p + T−p) /2. The convolution of this

with [1 1]/2 is(
Tω(p−1/2)(T p−1/2 + T−(p−1/2)) + Tω(p+1/2)(T p+1/2 + T−(p+1/2))

)
/4

=
(
TωpT−ω/2(T pT−1/2 + T−pT 1/2) + TωpTω/2(T pT 1/2 + T pT−1/2)

)
/4

= Tωp
(
T−ω/2T pT−1/2 + T−ω/2T−pT 1/2 + Tω/2T pT 1/2 + Tω/2T pT−1/2

)
/4
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Substituting for T 1/2 = −T−1/2 = i this becomes

iTωp
(
−T−ω/2T p + T−ω/2T−p + Tω/2T p − Tω/2T p

)
/4

= iTωp(Tω/2 − T−ω/2)(T p − T−p)/4
= i2Tωp((T p − T−p)/2) sin(πω/2)
= −Tωp((T p − T−p)/2) sin(πω/2)

Thus the artifact magnitude is multiplied by − sin(πω/2) but, because the
second factor is (T p − T−p) instead of (T p + T−p), the artifact phase is also
altered, so that the actual error in the new control point positions is along the
direction of the curve, rather than perpendicular to it, thus accounting for the
apparent anomaly noted in [4] that the geometric artifacts from B-splines of
even degree shrank at the same rate as those of the next degree higher. The
quantitative analysis of this is beyond the scope of this paper.

2.5 The Effect of the Kernel

It is quite possible to determine the effect of the kernel in exactly the same way
as we determined the effect of [1 2 1]/4, but there is a significantly simpler way,
which leads to more insight, and even to a way of designing kernels to have
desirable properties.

First observe that the kernel is palindromic, and that, because we have di-
vided out all 1 + z factors it has no factors of 1 + z. It must therefore have an
odd number of entries, because if it had an even number it would be divisible
by 1 + z.

Divide by an appropriate power of z so that the central value is the one
corresponding to z0, and do likewise with the [1 2 1]/4 generating polynomial.
(This process is legitimate, because multiplying or dividing by z merely shifts
our labelling along the polygon. If it is carried out with the mask expressed just
as a sequence of numbers you never even notice that it is happening.)

K(z) = . . . cz−2 + bz−1 + az0 + bz1 + cz2 . . .

S(z) = [z−1 + 2z0 + z1]/4

Now express K(z) as a polynomial in S(z). This will always be a finite poly-
nomial, because K(z) is itself finite.

For example, the kernel of the four-point scheme [2] is [-1 4 -1]/2, which can
be expressed as

[−1 4 − 1] = −[1 2 1] + 6[0 1 0]
[−1 4 − 1]/2 = −[1 2 1]/2 + 3[0 1 0]

= −2[1 2 1]/4 + 3[0 1 0]
= 3− 2S[z]

More complex (larger) kernels will be a polynomial in S of higher degree.
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We can now identify the effects that each term of this polynomial has on the
signal and the artifact, and then just sum those effects. The constant term mul-
tiplies both signal and artifact by the same constant: the linear term multiplies
the signal by cos2(πω/2) and the artifact by sin2(πω/2) etc. We can therefore
write down polynomials in these factors to get the effect of the kernel.

In the four-point case we have a net factor of 3− 2 cos2(πω/2) for the signal
and 3− 2 sin2(πω/2) for the artifact. As ω tends to zero we find that the factor
tends to 1 for the signal and 3 for the artifact. These are then multiplied by the
factors from the 1 + z factors to give the overall artifact and signal sizes for the
scheme.

An exercise for the reader is to determine the Taylor series for the signal and
artifact in terms of ω. It will then be seen that the total effect of the four-point
scheme on the signal varies as 1 + O(ω4) rather than as 1 + O(ω2) (as might be
expected from the cosine terms from the [1 2 1]/4 factors, and that the actual
difference from 1 is equal in magnitude to the effect on the artifact. This is
exactly what would be expected from an interpolating scheme.

We can now deliberately design kernels to have specific effects. The first op-
tion is that the kernel could be designed to have a signal factor exactly compen-
sating for the smoothing factors, so that the mean limit curve would be a circle
passing through the data points, with the artifact giving equal perturbations
inside it and outside. This would be exact only for one specific spatial frequency.

The other possibility is that the artifact could be cancelled out exactly for a
specific spatial frequency, by choosing the kernel polynomial to have roots within
the 0..1 range, so that when ω was such that sin2(πω/2) lay on a root the artifact
factor would be exactly zero. Those circle-preserving subdivision schemes which
need to know the number of vertices initially on a circle, can usefully be looked
at in this light.

3 Surfaces

The analysis here follows closely the univariate analysis. The first notational
difference is that abscissa positions and spatial frequencies are now bivariate
objects. We use upper case, P and Ω, respectively to denote them. The important
operator on them is the inner product, which gives a scalar result.

The bivariate spatial frequency Ω is represented as a vector with two com-
ponents, which we call ωx and ωy. In fact ωx measures the number of complete
cycles per point along the x axis, so that it is zero when Ω is pointing along the
y-axis.

The second notational difference is that we have to denote the shifts within
the grid: it is no longer adequate to use just +1 and -1 as shifts. We use the
symbols X and Y to denote the unit shifts in the abscissa plane along the two
grid directions of a rectangular grid. Thus X + Y and X − Y become shifts in
diagonal directions.

We assume without proof the validity of the partitioning of the subdivision
process into first a sampling, with insertion of zero elements at all new positions,
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followed by a series of convolutions with factors of the mask. This is highly plau-
sible for tensor product constructions. The same partitioning is believed to be
valid also for schemes which are not tensor products, but matrix notation be-
comes a clumsy tool for bivariate subdivision, when rows and columns (stencils
and masks, respectively) are both themselves arrays of coefficients.

On a rectangular grid the sampling process may be viewed as a tensor
product:

SP = TΩ.P (TX.P + 2 + T−X.P )(TY.P + 2 + T−Y.P )/4
= TΩ.P

+TΩ.P (TX.P + T−X.P )/2
+TΩ.P (TY.P + T−Y.P )/2
+TΩ.P (T (X+Y ).P + T−(X+Y ).P )/4
+TΩ.P (T (X−Y ).P + T−(X−Y ).P )/4.

There therefore exist a signal component, and four potential artifact compo-
nents, each of the form TΩ.P (TV.P + T−V.P )/2, V being directed along a grid
edge or along a diagonal of the grid.

Thus when we consider a signal which is not oriented along or perpendicular
to the grid edges, the artifacts, which remain aligned relative to the grid can no
longer be described as purely longitudinal or purely lateral.

Consider first the signal term, TΩ.P . The convolution of this with [1 2 1]/4
in direction D, (where D is X, Y , X + Y or X − Y ) is(

TΩ.[P−D] + 2TΩ.P + TΩ.[P+D]
)

/4

= TΩ.P
(
T−Ω.D + 2 + TΩ.D

)
/4

= TΩ.P cos2(πΩ.D/2)

This behaviour is exactly analogous to a curve’s longitudinal signal behaviour if
Ω and D lie in the same direction, while no scaling happens if Ω is perpendicular
to D.

Consider next one of the artifact components. Each of these can be expressed
as TΩ.P (TV.P +T−V.P )/2 (where V is X, Y , X +Y or X−Y ). The convolution
of this with [1 2 1]/4 in direction D is(

TΩ.[P−D](TV.[P−D] + T−V.[P−D]) + 2TΩ.P (TV.P + T−V.P )

+TΩ.[P+D](TV.[P+D] + T−V.[P+D])
)

/8

= TΩ.P
(
T−Ω.D(TV.P T−V.D + T−V.P TV.D) + 2(TV.P + T−V.P )

+TΩ.D(TV.P TV.D + T−V.P T−V.D)
)
/8

Because both V and D are taken from the set {X,Y,X + Y,X − Y }, there
are now only two cases to consider. In one case, when V.D = 0 or V.D = 2,
TV.D = T−V.D = 1. In the other case, when V.D = 1, TV.D = T−V.D = −1.
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In the first case the above expression simplifies to

TΩ.P
(
T−Ω.D(TV.P + T−V.P ) + 2(TV.P + T−V.P ) + TΩ.D(TV.P + T−V.P )

)
/8

= TΩ.P (TV.P + T−V.P )
(
T−Ω.D + 2 + TΩ.D

)
/8

= TΩ.P (TV.P + T−V.P ) cos2(πΩ.D/2)/2

so that the artifact component is multiplied by cos2(πΩ.D/2).
In the second case similar manipulation shows that the artifact component

is multiplied by sin2(πΩ.D/2).
These results can now be collected together into a table. To make the table

fit the page we write sin(πωx/2) as Sx and cos(πωx/2) as Cx:

V = X V = Y V = X + Y V = X − Y

D = X S2
x C2

y S2
x+y S2

x−y

D = Y C2
x S2

y S2
x+y S2

x−y

D = X + Y S2
x S2

y C2
x+y C2

x−y

D = X − Y S2
x S2

y C2
x+y C2

x−y

3.1 Examples

The values from the table above are now used to determine the artifact magni-
tudes for some of the standard quad-grid schemes. The Bicubic box spline has
two [1 2 1]/4 factors in each of the X and Y directions; the box-spline used
in Velho’s 4-8 scheme [7] has one [1 2 1]/4 factor in each of the four directions
X, Y , X + Y and X − Y ; and the box-spline used in Peters and Shiue’s 4-3
scheme [3] has one such factor in each of X and Y and a [1 1]/2 factor in each
of the diagonal directions. We can therefore determine the artifact magnitudes
by just multiplying together the appropriate number of factors from the above
table.

V = X V = Y V = X + Y V = X − Y

Bicubic S4
xC4

x S4
yC4

y S8
x+y S8

x−y

4− 8 S6
xC2

x S6
yC2

y S4
x+yC4

x+y S4
x−yC4

x−y

4− 3 S4
xC2

x S4
yC2

y S4
x+yC2

x+y S4
x−yC2

x−y

We plot the results of the above computations by using hatching of various
densities on an abscissa of Ω. Each of the figures shows the regions where the
sum of the four artifacts is greater than 0.1 (dense hatching), between 0.01
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Fig. 4. Total artifacts as a function of spatial frequency for the bicubic B-spline

Fig. 5. Total artifacts as a function of spatial frequency for the Four-direction box-

spline with two shifts in each direction

and 0.1 (lighter hatching) and less than 0.01 (unhatched). The sum is a crude
measure, but serves as a general measure of quality. Each square covers the
region −1/2 ≤ ωx,ωy ≤ 1/2, but the realistic region is the central quarter of
this area, where −1/4 ≤ ωx,ωy ≤ 1/4.
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Fig. 6. Total artifacts as a function of spatial frequency for the Four-direction box-

spline with two shifts in axis directions and one shift in each diagonal direction. It is

possible that the phase-shift effect from [1 1] factors, mentioned above, which reduces

the geometric artifact for dual schemes, may also apply in this case, making this plot

a pessimistic one, but this is far from certain, because this scheme is primal

4 Conclusions

The analysis of longitudinal and lateral artifacts in spline surfaces and in other
subdivision surfaces has been shown to be systematic and straightforward over
a regular rectangular grid. This is closely related to the spectral analysis of
wavelets, but has its own quirks resulting from the symmetry of the systems
involved.

The known results about approximation orders have been confirmed through
a different route, which gives actual artifact sizes from the number of vertices
per cycle, not just rates of convergence.

Indeed, the only surprise emerging from this work is that it has not been
standard material in courses on subdivision for many years.

4.1 Further Work

We have not studied here either general arities or splines over triangulations.
We expect the same techniques to be applicable, and similar results to emerge.
For the B-spline and box-spline cases the ternary and higher arities should, of
course, give exactly the same results as for the binary case, because the artifact
is a property of the relationship between the control polygon and the limit curve,
not of the subdivision by which it is implemented.
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Abstract. As observed by Farouki et al. [9], any set of C1 space bound-
ary data (two points with associated first derivatives) can be interpolated
by a Pythagorean hodograph (PH) curve of degree 5. In general there
exists a two dimensional family of interpolants.

In this paper we study the properties of this family in more detail.
We introduce a geometrically invariant parameterization of the family of
interpolants. This parameterization is used to identify a particular solu-
tion, which has the following properties. Firstly, it preserves planarity,
i.e., the interpolant to planar data is a planar PH curve. Secondly, it has
the best possible approximation order (4). Thirdly, it is symmetric in the
sense that the interpolant of the “reversed” set of boundary data is sim-
ply the “reversed” original interpolant. These observations lead to a fast
and precise algorithm for converting any (possibly piecewise) analytical
curve into a piecewise PH curve of degree 5 which is globally C1.

Finally we exploit the rational frames associated with any space PH
curve (the Euler-Rodrigues frame) in order to obtain a simple rational
approximation of pipe surfaces with a piecewise analytical spine curve
and we analyze its approximation order.

1 Introduction

Pythagorean hodograph (PH) curves (see the survey [11] and the references cited
therein), form a remarkable subclass of polynomial parametric curves. They have
a piecewise polynomial arc length function and, in the planar case, rational offset
curves. These curves provide an elegant solution of various difficult problems oc-
curring in applications, in particular in the context of CNC (computer-numerical-
control) machining.

In the planar case, the properties and various constructions of PH curves have
been thoroughly studied, e.g., [1, 6, 8, 7, 18, 23]. Due to the constrained nature
of PH curves, all constructions – which are linear in the case of polynomial
curves – become nonlinear in the PH case. Consequently, they may have more
than one solution, and the problem of choosing the ‘best’ solution has to be
addressed, e.g. by analyzing the approximation order or using the rotation index
[15, 18, 20, 21, 22].

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 364–380, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Spatial PH curves were introduced by Farouki and Sakkalis in 1994 [5], and
they have later been characterized using results about Pythagorean quadruples
in the ring of polynomials and quaternion calculus [2, 4, 10]. Spatial PH curves
can be equipped with rational frames, which were studied in [3, 13, 17].

Various constructions were also given, e.g. a global method for C2 inter-
polation of point data by quintic splines has been presented in [12]. Hermite
interpolation of G1 boundary data was addressed in [17], and C1 Hermite in-
terpolation by PH quintics was discussed in [9]. In the latter case, the authors
identify a family of interpolants to any C1 Hermite data which depends on two
free parameters, and a heuristic choice for them is given. Later, this has also
been related to helical interpolants [14].

The present paper is devoted to the problem of C1 Hermite interpolation
by spatial PH quintics, and to the approximation of pipe surfaces and sweeping
surfaces. We study the family of interpolants and identify the solution which has
the best approximation order, preserves planarity, and is symmetric with respect
to the reversion t �→ (1− t) of the parameter interval [0, 1].

The remainder of the paper is organized as follows. First we recall some ba-
sic facts about quaternion algebra and PH curves. The first part of Section 3
summarizes the approach taken in [9] to the problem of C1 Hermite interpola-
tion by PH quintics. In the second part we introduce a parameterization of the
family of interpolants with respect to a standard position. We prove that this
parameterization is geometrically invariant and symmetric.

Section 4 provides a qualitative analysis of the solutions. We give an asymp-
totical analysis, including approximation order, and we identify the parameter
values which preserve planarity. Based on these results, we use optimal solution
for converting analytical curves into piecewise PH quintic curves and for the
approximation of pipe surfaces. Finally we conclude the paper.

2 Preliminaries

In order to make this paper self–contained, we recall some basic facts about
quaternions and Pythagorean Hodograph curves.

2.1 Quaternions

Quaternions (see e.g. [19] for an elementary introduction) are elements

A = a + axi + ayj + azk (1)

of 4–dimensional real linear space Q with basis 1, i, j,k. The space Q has the
structure of a non-commutative field, where the multiplication is defined by the
relations

i2 = j2 = k2 = ijk = −1 (2)

of the basis elements, which imply

ij = −ji = k, jk = −kj = i, ki = −ik = j. (3)
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The conjugate of any quaternion (1) is defined as A∗ = a− axi− ayj− azk, and
its absolute value is the non-negative real number

|A|2 =
√
AA∗ =

√
A∗A =

√
a2 + a2

x + a2
y + a2

z. (4)

Unit quaternions, which are characterized by |A| = 1, form a multiplicative
group. Pure quaternions are distinguished by having a vanishing scalar part.

Quaternions are traditionally used in classical mechanics. Any vector c =
[cx, cy, cz]� ∈ R3 is identified with the pure quaternion cxi+ cyj+ czk. Any unit
quaternion U can be expressed in the form

U = cos
θ

2
+ u sin

θ

2
, θ ∈ [−π,π), (5)

where u is a unit pure quaternion. Then the mapping

U : R3 → R3 : U(c) = U cU∗, (6)

represents a rotation through the angle θ about the axis spanned by the direction
vector u.

In the sequel we will use the the abbreviation

Q(φ) = (cos φ + i sin φ) (7)

for unit quaternions with vanishing j and k components.
For the construction of PH Hermite interpolants which is described below,

the following Lemma proved in [9–section 3.2] is essential.

Lemma 1. For a given pure quaternion c, which is not a negative multiple of i,
all solutions of the equation

A iA∗ = c (8)

are expressed as

A(φ) =
√
|c|

c
|c| + i∣∣∣ c
|c| + i

∣∣∣Q(φ), φ ∈ [0, 2π). (9)

If c is a negative multiple of i, then a suitable limit of the formula (9) must be
taken.

2.2 Pythagorean Hodograph Curves

The hodograph of a space curve p(t) = [x(t), y(t), z(t)]� of degree n is the curve
h(t) = [x′(t), y′(t), z′(t)]� of degree n − 1, where ′ denotes the first derivative.
Recall that a polynomial curve is called Pythagorean Hodograph (PH), if the
length of its tangent vector depends in a (piecewise) polynomial way on the
parameter. In particular p(t) = [x(t), y(t), z(t)]� is called space PH curve if
there exists a polynomial σ(t) such that

x′(t)2 + y′(t)2 + z′(t)2 = σ2(t). (10)
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If gcd(x′(t), y′(t), z′(t)) is a square, then equation (10) holds if and only if there
exist polynomials u(t), v(t), p(t), q(t) such that

x′(t) = u2(t) + v2(t)− p2(t)− q2(t),
y′(t) = 2u(t)q(t) + 2v(t)p(t),
z′(t) = 2v(t)q(t)− 2u(t)p(t),
σ(t) = u2(t) + v2(t) + p2(t) + q2(t),

(11)

see [4]. This result can be reformulated using quaternions [2, 10]. Any spatial
polynomial curve p(t) = [x(t), y(t), y(t)]� is identified with the pure–quaternion–
valued function p(t) = x(t)i+y(t)j+z(t)k. The PH curves are then characterized
as follows.

Lemma 2. Let p(t) = x(t)i+y(t)j+z(t)k be a space polynomial curve, such that
gcd(x′(t), y′(t), z′(t)) is the square of a polynomial 1. Then p(t) is PH if and only
if there exists a quaternion-valued polynomial A(t) = u(t) + v(t)i + p(t)j + q(t)k
such that

h(t) = A(t) iA∗(t). (12)

The arc length function of the PH curve is a polynomial obtained by integrating
|A(t)|2 = A(t)A∗(t).

Consequently, the construction of a PH curve is reduced to the construction
of a suitable curve A(t). This curve will be called the preimage.

3 C1 Hermite Interpolation by Space Quintics

Following [9], we construct a spatial PH curve p(t) which matches given C1

Hermite boundary data. More precisely, the curve is to interpolate the end points
p0, p1 and the tangent vectors (or derivation vectors) t0, t1. The cases t0 = 0 or
t1 = 0, and t0 = −t1, which correspond to singular points at the segment end
points, and to antiparallel tangent vectors of the same lengths, will be excluded.

3.1 Construction of the Interpolants

Two curves p(t), p̃(t) share the same hodograph if and only if they differ only
by translation. Consequently a space PH curve p(t) is fully determined by the
preimage A(t) and by the location of its starting point p(0).

The position of p0 can be matched by a suitable choice of the integration
constant. The remaining 3 · 3 = 9 conditions must be satisfied by choosing the
control points of the preimage A(t). Hence, the degree of A(t) has to be at
least 2, yielding 3 · 4 = 12 free parameters. As shown in [10], the representation
preimage → hodograph (12) has one dimensional fibers. Therefore one can ex-
pect that there will be a two dimensional system of PH interpolants of degree
2 · 2 + 1 = 5.

1 This includes the generic case gcd(x′(t), y′(t), z′(t)) = 1.
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We will use the Bernstein-Bézier representation [16] of the hodograph h(t) =
p′(t) and the preimage A(t):

h(t) =
4∑

i=0

hiB
4
i (t), A(t) =

2∑
i=0

AiB
2
i (t), t ∈ [0, 1], (13)

where hi (pure quaternions) and Ai (quaternions) are the control points and
Bn

j (t) =
(
n
j

)
tj(1 − t)n−j are the Bernstein polynomials. The interpolation con-

ditions lead to the equations

h0 = t0, h4 = t1, and
1
5

4∑
i=0

hi = (p1 − p0), (14)

which have to be satisfied by the control points of the hodograph. After express-
ing them in terms of the control points of the preimage curve, and a suitable
re–arranging, one arrives at the following system of equations [9]:

A0iA∗
0 = t0, A2iA∗

2 = t1, (15)

and
(3A0 + 4A1 + 3A2)i(3A0 + 4A1 + 3A2)∗ =

120(p1 − p0)− 15(t1 + t0) + 5(A0iA∗
2 +A2iA∗

0).
(16)

These three equations have the form (8). From (15) we get two 1–parametric sys-
tems of solutions A0(φ0) and A2(φ2) of the form (9) (step 1). After substituting
them into (16), we get (step 2) a 3-parametric system of solutions A1(φ0, φ1, φ2).

Summing up, we arrive at a three-parametric system of suitable preimages

A(t) = A0(φ0)B2
0(t) +A1(φ0, φ1, φ2)B2

1(t) +A2(φ2)B2
2(t). (17)

However, as observed in [9], the resulting PH curve depends only on the differ-
ences of the angular parameters φ0, φ1, φ2, and therefore the preimages with a
fixed value of φ1 still give all possible PH interpolants. We fix φ1 = 0 and denote
the system of preimages as Aφ0,φ2(t).

2

The quintic PH interpolants are obtained from

pφ0,φ2(τ) = p0 +
∫ τ

0

Aφ0,φ2(t)iA∗
φ0,φ2

(t) dt. (18)

As a first example, Figure 1 shows some representatives of the system of all
PH quintic interpolants to the data

p0 = (0, 0, 0)�, p1 = (1, 0, 0)�, t0 = (3, 3, 0)�, t1 = (3, 3, 0)�. (19)

Note, that while this data are in fact planar (since it is contained in the xy
plane), most interpolants are truly spatial curves.

2 Any fixed value of φ1 gives equivalent results. In [9] authors choose φ1 = −π/2.
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Fig. 1. The system of space PH quintic interpolants to given data. 64 representatives

are plotted, along with their projections into the xy and yz planes (gray lines). The

end-point tangent vectors are also shown, scaled by 1/4

3.2 Invariance of Interpolants

For any given Hermite data p0, p1, t0, t1, the system {pφ0,φ2(t) |φ0, φ2 ∈ [0, 2π)}
represents all PH Hermite interpolants. Therefore, it is invariant [10] with respect
to orthogonal transformations (including reflections).

More precisely, if we apply an orthogonal transformation Ξ to the Hermite
data, we get modified data p̃0, p̃1, t̃0, t̃1. The associated systems of interpolants
then satisfy

{p̃φ̃0,φ̃2
(t) | φ̃0, φ̃2 ∈ [0, 2π)} = Ξ({pφ0,φ2(t) |φ0, φ2 ∈ [0, 2π)}).

On the other hand, this transformation does not preserve the parameteriza-
tion of the solutions: In general

p̃φ̃0,φ̃2
(t) = Ξ(pφ0,φ2(t)) (20)

is not valid for φ̃0 = φ0, φ̃2 = φ2.
The relation between φ0, φ2 and φ̃0, φ̃2 ensuring (20) is rather complicated [9].

Still, it can be formulated easily in the following cases.

Lemma 3. For any φ0, φ2:

1. If Ξ is a rotation about the i-axis, then

p̃φ0,φ2(t) = Ξ(pφ0,φ2(t)).

2. If Ξ is a reflection with respect to a plane containing the i-axis, then

p̃φ0,φ2(t) = Ξ(p−φ0,−φ2(t)).
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Proof. Consider fixed values of φ0, φ2 and let A0,A1,A2 denote the control
points of the preimage for some data p0, p1, t0, t1 and Ã0, Ã1, Ã2 for the
transformed data p̃0 = Ξ(p0), p̃1 = Ξ(p1), t̃0 = Ξ(t0), t̃1 = Ξ(t1).

1) Any rotation can be expressed using formula (6). If Ξ is rotation about
the i-axis through angle θ, then for any vector c we have

Ξ(c) = Q(
θ

2
)cQ(−θ

2
). (21)

The right-hand side of the previous equation allows to extend the transformation
Ξ from pure quaternions to all quaternions. Because of the form of the equations
(9) and the fact that Q(φ)Q( θ

2 ) = Q( θ
2 )Q(φ),

Ã0 = Ξ(A0), and Ã2 = Ξ(A2). (22)

Now using (21) and (22)

(Ã0iÃ∗
2 + Ã2iÃ∗

0) = Ξ(A0iA∗
2 +A2iA∗

0). (23)

Consequently, in step 2, the right-hand side of equation (16) for the transformed
data is equal to the transformed right-hand side of this equation for the original
data. Hence,

Ã1 = Ξ(A1) and thus for the whole preimage curve Ã(t) = Ξ(A(t)). (24)

Finally

p̃(τ) = p̃0+
∫ τ

0

Ã(t)iÃ∗(t) dt = Ξ(p0)+
∫ τ

0

Ξ(A(t)iA∗(t)) dt = Ξ(p(τ)). (25)

2) Due to the first part of the lemma, it suffices to consider only the reflection
Ξk with respect to the i, j plane. Indeed, any other reflection with respect to a
plane containing the i axis can be obtained as a composition of Ξk and two
rotations about the i axis.

Ξk can be extended to all quaternions setting

Ξk(a + bi + cj + dk) = −a + bi + cj− dk. (26)

A direct computation confirms, that formulas (22)-(25) are still valid, if the
control points Ãi are constructed with parameters −φ0,−φ2, while the control
points Ai are constructed with the parameters φ0, φ2. ��

A fully invariant parameterization of interpolants is obtained by considering
a standard position.

Definition 1. The C1 spatial Hermite data are said to be in a standard position,
if t0 + t1 is a positive multiple of i, and p0 = 0.

From now on, we will use the following parameterization of the system of
interpolants.
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Definition 2. The system of interpolants is parameterized by the two parame-
ters φ0, φ2, as follows. First we transform data to a standard position, where we
construct the interpolants pφ0,φ2(t), as described before. Finally, we transform
the solution back to the original position.

Note that parameterization is well–defined, since Lemma 3 ensures that the
particular choice of a standard position (which may vary by a rotation about i
axis) does not matter.

Theorem 1. The parameterization of the solutions, according to Definition 2,
is invariant with respect to rigid body motions (special orthogonal transforma-
tions), whereas reflections change the signs of both parameters. Consequently,
the solution p0,0(t) is invariant with respect to all orthogonal transformations.

The proof results from Lemma 3.
In addition, the parameterization of the solutions is symmetric in the follow-

ing sense.

Theorem 2. Let pφ1,φ2(t) be the interpolants of data p0,p1, t0, t1 and p̄φ0,φ2(t)
the interpolants of the ”reversed” data p̄0 = p1, p̄1 = p0, t̄0 = −t1, t̄1 = −t0.
Then for any φ0, φ2

p̄φ0,φ2(1− t) = p−φ2,−φ0(t). (27)

Proof. Suppose that the given data to be in a standard position, i.e. t0 + t1 is
a positive multiple of i and p0 = 0. The reversed data can be transformed into
a new standard position by the translation of the vector −p1 and the rotation
given as composition of the the symmetry S : c→ −c and reflection Ξk (26). In
fact, S already transforms the reversed data into a standard position, but it is
not a rotation (det(S) = −1).

The standard position associated with the reversed data differs from the
original data only by swapping t0 and t1 and by the reflection Ξk. The theorem
then follows from the symmetry of the system of equations (15)-(16) with respect
to A0 and A2, and from the second part of Lemma 3. ��

4 Qualitative Analysis of the Interpolants

In this section we give a qualitative analysis of the system of PH quintic inter-
polants, in order to identify the ‘best’ values of the parameters φ0, φ2. These
parameters yield the interpolants suitable for applications.

4.1 Asymptotic Behavior

In order to fix the free parameters φ0, φ2, we will now study the asymptotic be-
havior of the solutions pφ0,φ2(t). More precisely, we assume that the C1 Hermite
data are taken from a small segment of an analytical curve, and we investigate
the asymptotic behavior of the solutions for decreasing step-size.
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We assume that the curve is given by its Taylor expansion. Without loss of
generality,

C(T ) = (T +
∞∑

i=2

xi

i!
T i,

∞∑
i=2

yi

i!
T i,

∞∑
i=2

zi

i!
T i)� (28)

with arbitrary coefficients x2, x3, . . ., y2, y3, . . . and z2, z3, . . ..
For any step–size h, we pick the segment c(t) = C(ht), t ∈ [0, 1]. This segment

has the expansion

c(t) = (th +
∞∑

i=2

xi

i!
tihi,

∞∑
i=2

yi

i!
tihi,

∞∑
i=2

zi

i!
tihi)�. (29)

Now we interpolate the C1 Hermite boundary data at the points c(0) = C(0) and
c(1) = C(h). Depending on the interval size h, different PH curves interpolating
the data behave as described in the following Theorem.

Theorem 3. The error of the PH interpolation

max
t∈[0,1]

||c(t)− pφ0,φ2(t)|| (30)

converges to 0 as O(h4) if and only if φ0 = φ2 = 0. Otherwise it converges to 0
only as O(h1).

Proof. The proof consists in evaluating power series of all quantities occurring in
the interpolation process with respect to the step size h. This can be done by a
suitable computer algebra tool. Due to the space limitation and the complexity
of the expressions, we show only the leading terms of certain quantities, in order
to illustrate the idea of our approach.

First, we derive the Taylor expansions of the Hermite boundary data at t = 0
and t = 1 of the curve (29),

p0 =

⎛⎝0
0
0

⎞⎠ p1 =

⎛⎝h + 1
2x2h

2 + 1
6x3h

3 + . . .
1
2y2h

2 + 1
6y3h

3 + . . .
1
2z2h

2 + 1
6z3h

3 + . . .

⎞⎠
t0 =

⎛⎝h
0
0

⎞⎠ t1 =

⎛⎝h + x2h
2 + 1

2x3h
3 + . . .

y2h
2 + 1

2y3h
3 + . . .

z2h
2 + 1

2z3h
3 + . . .

⎞⎠ .

(31)

This data can be transformed into a standard position by a rotation

U =

⎛⎜⎝1− y2
2+ z2

2

8 h2 + . . . y2
2 h + y3−y2x2

4 h2 + . . . z2
2 h + z3−z2x2

4 h2 + . . .

−y2
2 h− y3−y2x2

4 h2 + . . . 1− y2
2

8 h2 + . . . 0
− z2

2 h− z3−z2x2
4 h2 + . . . − z2y2

4 h2 + . . . 1− z2
2

8 h2 + . . .

⎞⎟⎠ .
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Then we compute the Taylor expansions of the control points of the preimage
for the transformed data U(p0), U(p1), U(t0), U(t1). Using (9) we obtain

A0(φ0) = −√h[sin φ0 + . . . ] +
√

h[cos φ0 + . . . ]i−√h[y2 cos φ0+z2 sin φ0
4 h + . . . ]j

−√h[ z2 cos φ0−y2 sin φ0
4 h + . . . ]k,

A2(φ2) = −√h[sin φ2 + x2 sin φ2
2 h + . . . ] +

√
h[cos φ2 + x2 cos φ2

2 h + . . . ]i
+
√

h[y2 cos φ2+z2 sin φ2
4 h + . . . ]j +

√
h[ z2 cos φ2−y2 sin φ2

4 h + . . . ]k
(32)

(step 1). In step 2 (with the fixed choice φ1 = 0) we obtain the expansion of A1,
involving both φ0, φ2. We omit it here since even the leading terms are rather
complicated.

Finally we are able to express the Taylor expansion of the PH interpolant
pφ1,φ2(t), which is again a long expression. Still, the leading term of its x com-
ponent is equal to[

t+ 1
2

(
cos (φ0)

√
10 cos(φ2−φ0)+90−3cos(φ2−φ0)−7

)
t2

− 1
2

(
[3 cos (φ0) + cos (φ2)]

√
10 cos(φ2−φ0)+90−12cos(φ2−φ0)−28

)
t3

+ 1
2

(
[3 cos (φ0) +2 cos (φ2)]

√
10 cos(φ2−φ0)+90−15cos(φ2−φ0)−35

)
t4

−1
2

(
[cos (φ0) + cos (φ2)]

√
10 cos(φ2−φ0)+90−6 cos(φ2−φ0)−14

)
t5
]
h.

(33)

Comparing this series with (29), we see that the coefficients at t2, t3, t4, t5 in
(33) must be zero if the interpolant pφ1,φ2(t) should match the the shape of c(t)
and the error (30) should converge to 0 faster then O(h). Solving the system
of trigonometric equations it can be shown, that this is achieved if and only
if φ0 = φ2 = 0. Using these values, the Taylor expansion of p0,0(t) simplifies
enormously, and matches the Taylor expansion of c(t) up to h3. ��
Remark 1. Though the proof Theorem 3 seems to be complicated, it is in fact
a straightforward computation. It would be interesting to proof a more general
result stating that any C1 Hermite interpolation satisfying certain conditions
always leads to approximation order 4, as it is the case for Hermite interpola-
tion by Bézier cubics and PH quintics p0,0(t). This may be a subject of future
research.

Remark 2. In Theorem 3 we considered only constant values of φ0 and φ2, which
do not depend on the the step size h. It may also be interesting to choose these
parameters depending on the step-size. Thus φ0(h), φ2(h) would be functions of
h. In this more general setting we still can study the asymptotic behavior. It is
only necessary to replace the constants φ0, φ2 by abstract Taylor series of the
functions φ0(h), φ2(h). We obtained the following result about the approximation
order.

The error of the PH interpolation

max
t∈[0,1]

||c(t)− pφ0(h),φ2(h)(t)||

is equal to O(h4) if and only if
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1. lim
h→0

φ1(h) = lim
h→0

φ2(h) = 0 and

2. φ′
2(0) = −φ′

0(0).

If only the first condition holds, the error of the approximation equals O(h3).
If 1. is not satisfied, then the error equals O(h1).

Remark 3. The interpolant p0,0(t) has the following interesting property. If φ0 =
φ1 = φ2 = 0, then the control points A0, A1, A2 are pure quaternions, and
therefore the whole preimage A(t) is pure-quaternion valued. This corresponds
to setting u(t) = 0 in the representation formula (11), which then becomes

x′(t) = v2(t)− p2(t)− q2(t),
y′(t) = 2v(t)p(t),
z′(t) = 2v(t)q(t),
σ(t) = v2(t) + p2(t) + q2(t).

(34)

This incomplete description of PH curves was used first in [5]. The optimal solu-
tion p0,0(t) is therefore given by transforming the curve into standard position
and constructing one of the interpolants of the form (34).

4.2 Preservation of Planarity

As a natural question, one may ask which interpolants pφ0,φ2 are planar for
planar input data.

C1 Hermite interpolation by PH quintics in the plane is well understood. It
has been shown, that for any non-degenerated planar data there are four planar
PH quintic interpolants [6], which have been in [20] labeled as (++), (+−),
(−+) and (−−). In the following new result we identify them among the two
parameter family of spatial interpolants.

Theorem 4. For any input data p0, p1, t0, t1 lying in a plane, the four inter-
polants p0,0(t), p0,π(t), pπ,0(t), pπ,π(t) are planar. They can be identified in the
following way with the interpolants in [20]:

p0,0(t) = (++), p0,π(t) = (+−), pπ,0(t) = (−+), and pπ,π(t) = (−−). (35)

Proof. We suppose that the input data lie in the i, j plane, which we will denote
with Qij. We define on the quaternions the commutative multiplication

U � V :=
1
2
(U iV∗ + V iU∗). (36)

One can verify directly, that (Qij, �) $ C. Under this isomorphism, the equations
(15)-(16) become the complex equations characterizing PH interpolation in plane
(equations (3)-(4) of [20]).

Obviously, for the choice φ0 = 0, resp. φ0 = π, the control point A0 is in Qij

and correspond to the complex square root of t0 with positive, resp. negative
real part, which is precisely the principle of the labeling used in [20]. Similarly
for A2 and φ2. Then also A1 ∈ Qij and the correspondence (35) holds. ��
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Fig. 2. Planar interpolants of Hermite data (19). The interpolant p0,0 is plotted in

bold. Projections to xy and yz plane are plotted in grey

Figure 2 shows the four planar interpolants p0,0(t), p0,π(t), pπ,0(t), pπ,π(t)
to the planar data (19) (see also the previous figure). Note that the projections
(grey) into the yz plane collapse into line segments.

5 Applications

We apply the previous results in order to design an algorithm converting any
analytical curve into a piecewise PH quintic curve. This conversion is then used
for approximation of pipe surfaces.

5.1 Conversion of Analytical Curves

The result described in Theorem 3 allows us to design an algorithm for the
conversion of any analytical curve into a piecewise PH curve. Let the param-
eter domain of the analytical curve be [0, 1]. We split this interval into the 2n

subintervals [ i
2n , i+1

2n ], i = 0..2n − 1. For each subinterval, we construct the PH
Hermite interpolant p0,0(t) and obtain a C1 continuous piecewise PH curve of
degree 5. If the error from the original analytical curve is not sufficiently small,
we continue the subdivision. Due to the Proposition 3, the error will converge
to 0 as O ( 1

16n

)
under subdivision.

The relatively high rate of convergence is demonstrated by the following
example.

Figure 3 shows the segment of the analytical curve

c(t) = (1.5 sin(7.2t), cos(9t), ecos(1.8t))�, t ∈ [0, 1]. (37)

We construct the PH Hermite interpolant for the whole segment and the piece-
wise PH interpolants obtained after splitting the parameter into 2, 4, 8, ..., 512
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Fig. 3. Approximate conversion of an analytical curve (bold line) via C1 Hermite

interpolation by PH curves, obtained after splitting the parameter domain into 1, 2, 4

and 8 segments. The difference between the curves is almost invisible in the last case.

In addition to the curve its projection into xy plane is plotted (gray line)

subintervals. The maximal approximation error and its improvement (ratio) in
each step are shown in Table 1.

Clearly, instead of the simple uniform subdivision, using an adaptive subdi-
vision scheme would reduce the number of segments.

5.2 Approximation of Pipe Surfaces

PH curves possess a simple low degree rational adapted frame, which has been
called the Euler-Rodrigues frame in [3]. Based on this construction, Farouki
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Table 1. Error of piecewise quintic PH approximation via Hermite interpolation

#Segments Error Ratio #Segments Error Ratio

1 2.429 32 1.941 10−4 10.67×
2 1.384 1.76× 64 1.337 10−5 14.52×
4 1.553 10−1 8.91× 128 8.523 10−7 15.68×
8 2.399 10−2 6.48× 256 5.376 10−8 15.85×
16 2.070 10−3 11.59× 512 3.361 10−9 16.00×

proposed a rational approximation of the rotation minimizing frame for any
space PH curve [13].

Both frames can be used for the approximation of pipe surfaces, or – more
generally – of sweep surfaces. First we convert a given analytical curve into a
piecewise PH curve using the algorithm of section 5.1 and then we construct a
pipe surface for this PH curve.

The approximation error can be defined in the following way. The exact pipe
surface with radius r can be understood as a union of circles S(t), with centers
c(t) and lying in the normal plane of c at point t. Similarly, our approximation
of the pipe surface can be seen as collection of the circles S̃(t).

For each parameter value t, we define E(t) as the Hausdorff distance of the
circles S(t) and S̃(t). Then the global error of the approximation is defined as

E = max
t∈[0,1]

E(t). (38)

Theorem 5. The approximation error E behaves as O(h3) for h→ 0.

Proof. Using the triangle inequality, the Hausdorff distance between circles S(t)
and S̃(t) can be bounded as

E(t) ≤ r

∥∥∥∥∥ c′(t)
||c′(t)|| −

p′
0,0(t)

||p′
0,0(t)||

∥∥∥∥∥+ ‖c(t)− p0,0(t)‖, (39)

where the first term represents the Hausdorff distance between two circles with a
common center and the second one is the distance between the centers. According
to Theorem 3

max
t∈[0,1]

||c(t)− p0,0(t)|| = O(h4). (40)

In a similar way one can prove that

max
t∈[0,1]

∥∥∥∥∥ c′(t)
||c′(t)|| −

p′
0,0(t)

||p′
0,0(t)||

∥∥∥∥∥ = O(h3), (41)

which concludes the proof. ��
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Fig. 4. Approximation of a pipe surface

As an example, Figure 4 shows an approximation of a pipe surface associated
with the curve (37), constructed using a piecewise PH curve composed of 8
segments (see last figure of Fig. 3).

6 Conclusion

Starting from previous results about quintic PH curves in two and three dimen-
sions [9, 20], we analyzed the system of solutions and identified one of them,
which is suitable for applications. More precisely, it is invariant under orthogo-
nal transformations (rigid body transformations and reflections), preserves pla-
narity, it is invariant with respect to reversion of the parameter interval, and it
has the optimum approximation order. We used this solution for approximately
converting general curves into PH form and for approximation of pipe surfaces.

It should be noted that choosing this solution leads to a significant improve-
ment of the approximation order. In order to achieve the same error with other
solutions, 8 times as many intervals would be needed. Also, the shape might be
less pleasing.

As a matter of future work, we will investigate the problem of C2 Hermite in-
terpolation in three–dimensional space. According to our experience in the planar
case, the use of geometric Hermite data (points, tangent directions, curvatures)
always produces problems with specific points, such as inflections, while these
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difficulties are not present for analytical data (points, first and second deriva-
tives). Consequently, the use of analytical data seems to be more appropriate.
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21. Z. Š́ır and B. Jüttler (2005), Constructing acceleration continuous tool paths using
pythagorean hodograph curves. Mech. Mach. Theory. In press.

22. D.S. Meek and D.J. Walton (1997), Geometric Hermite interpolation with Tschirn-
hausen cubics, Journal of Computational and Applied Mathematics 81, 299–309.

23. D.J. Walton and D.S. Meek (2004), A generalisation of the Pythagorean hodograph
quintic spiral. J. Comput. Appl. Math. 172, no. 2, 271–287.



Modelling Surface Normal Distribution Using
the Azimuthal Equidistant Projection

William A.P. Smith and Edwin R. Hancock

Department of Computer Science, The University of York,
York, YO1 5DD, UK

{wsmith, erh}@cs.york.ac.uk

Abstract. This paper describes how surface shape, and in particular
facial shape, can be modeled using a statistical model that captures vari-
ations in surface normal direction. To construct this model we make use
of the azimuthal equidistant projection to map surface normals from the
unit sphere to points on a local tangent plane. The variations in surface
normal direction are captured using the covariance matrix for the pro-
jected point positions. This allows us to model variations in surface shape
using a standard point distribution model. We show how this model can
be trained using surface normal data acquired from range images. We
fit the model to intensity data using constraints on the surface normal
direction provided by Lambert’s law. We demonstrate the utility of the
method on the recovery of 3D surface shape from 2D images.

1 Introduction

Shape-from-shading provides an alluring yet somewhat elusive route to recov-
ering 3D surface shape from single 2D intensity images [1]. Unfortunately, the
method has proved ineffective in recovering the realistic shape of complex sur-
faces, such as the human face, because of local convexity-concavity instability
caused by the bas-relief ambiguity [1]. This is of course a well known effect which
is responsible for a number of illusions, including Gregory’s famous inverted mask
[2]. It is for this reason that methods such as photometric stereo [3] have proved
to be more effective.

One way of overcoming this problem with single view shape-from-shading
is to use domain specific constraints. For the specific case of faces, several au-
thors [4, 5, 6, 7, 8] have shown that, at the expense of generality, the accuracy
of recovered shape information can be greatly enhanced by restricting a shape-
from-shading algorithm to a particular class of objects. For instance, both Pra-
dos and Faugeras [8] and Castelan and Hancock [7] use the location of singular
points to enforce convexity on the recovered surface. Zhao and Chellappa [5],
on the other hand, have introduced a geometric constraint which exploited the
approximate bilateral symmetry of faces. This ‘symmetric shape-from-shading’
was used to correct for variation in illumination. They employed the technique
for recognition by synthesis. However, the recovered surfaces were of insuffi-
cient quality to synthesise novel viewpoints. Moreover, the symmetry constraint
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is only applicable to frontal face images. Atick et al. [4] proposed a statistical
shape-from-shading framework based on a low dimensional parameterisation of
facial surfaces. Principal components analysis was used to derive a set of ‘eigen-
heads’ which compactly captures 3D facial shape. Unfortunately, it is surface
orientation and not depth which is conveyed by image intensity. Therefore, fit-
ting the model to an image equates to a computationally expensive parameter
search which attempts to minimise the error between the rendered surface and
the observed intensity. This is similar to the approach adopted by Samaras and
Metaxas [6] who incorporate reflectance constraints derived from shape-from-
shading into a deformable model.

Unfortunately, the construction of a statistical model for the distribution of
surface normal directions is not a straightforward task. The reason for this is
that the statistical representation of directional data has proved to be consid-
erably more difficult than that for Cartesian data [9]. Surface normals can be
viewed as residing on a unit sphere and may be specified in terms of the eleva-
tion and azimuth angles. This representation makes the computation of distance
difficult. For instance, if we consider a short walk across one of the poles of
the unit sphere, then although the distance traversed is small, the change in
azimuth angle is large. Likewise, the significance of a change in azimuth angle is
dependent on the magnitude of the elevation angle. In other words, elevation and
azimuth are not comparable. Hence, constructing a statistical model that can
capture the statistical distribution of directional data is not a straightforward
task. Heap and Hogg [9] provided a partial solution to the angle discontinuity
problem for the circular case by attempting to place the discontinuity such that
no boundary crossings occur in a given distribution. Unfortunately, the method
does not extend in a simple way to data on the sphere.

To overcome the problem, in this paper we draw on ideas from cartography.
Our starting point is the azimuthal equidistant or Postel projection [10]. This
projection has the important property that it preserves the distances between
the centre of projection and all other locations on the sphere. It is used in car-
tography for path planning tasks. Another useful property of this projection is
that straight lines on the projected plane through the centre of projection corre-
spond to great circles on the sphere. The projection is constructed by selecting a
reference point on the sphere and constructing the tangent plane to the reference
point. Locations on the sphere are projected onto the tangent plane in a manner
that preserves arc-length on the sphere.

We exploit this property to generate a local representation of the field of
surface normals. Our idea is as follows. We commence with a set of needle-maps,
i.e. fields of surface normals which in practice are obtained from range images.
We begin by computing the mean field of surface normals. The surface normals
are represented using elevation and azimuth angles on a unit sphere. At each
image location the mean-surface normal defines a reference direction. We use
this reference direction to construct an azimuthal equidistant projection for the
distribution of surface normals at each image location. The distribution of points
on the projection plane preserves the distances of the surfaces normals on the
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unit sphere with respect to the mean surface normal, or reference direction. We
then construct a deformable model over the set of surface normals by applying
the Cootes and Taylor [11] point distribution model to the co-ordinates that re-
sult from transforming the surface normals from the unit sphere to the tangent
plane under azimuthal equidistant projection. On the tangent projection plane,
the points associated with the surface normals are allowed to move in a manner
which is determined by the principal component directions of the covariance ma-
trix for the point-distribution. Once we have computed the allowed deformation
movement on the tangent plane, we recover surface normal directions by using
the inverse transformation onto the unit sphere.

We fit the model to 2D intensity images using ideas drawn from shape-from-
shading. We couple the model to the raw image brightness using the geometric
shape-from-shading framework of Worthington and Hancock [12]. According to
this framework, when the surface reflectance follows Lambert’s law, then the
surface normal is constrained to fall on a cone whose axis is in the light source
direction and whose opening angle is the inverse cosine of the normalised image
brightness. This method commences from an initial configuration in which the
surface normals reside on the irradiance cone and point in the direction of the
local image gradient. The statistical model is fitted to recover a revised estimate
of the surface normal directions. The best-fit surface normals are projected onto
the nearest location on the irradiance cones. This process is iterated to conver-
gence, and the height map for the surface recovered by integrating the final field
of surface normals. We explore the utility of the resulting model for a number
of face analysis tasks.

2 A Statistical Model for Surface Normals

Fields of surface normals provide an important source of information from which
a statistical surface shape model can be constructed. The surface normals can
be obtained in a number of ways, including capturing range images or using
surface orientation information extracted from intensity data using processes
such as shape-from-shading. A field of surface normals, or needle map, provides
a more detailed description of an object than a corresponding brightness image.
Surface normals are invariant to changes in illumination and surface reflectance.
Moreover, topographic information such as surface curvature can be computed
from a field of surface normals [13]. Using shape-from-shading [12], the field of
surface normals is also more easily recovered from an image than the underlying
surface height function, since it is orientation and not depth information which
is conveyed by variations image intensity.

2.1 Azimuthal Equidistant Projection

A ‘needle map’ describes a surface z(x, y) as a set of local surface normals n(x, y)
projected onto the view plane. Let nk(i, j) = (nx

k(i, j), ny
k(i, j), nz

k(i, j))T be the
unit surface normal at the pixel indexed (i, j) in the kth training image. If there
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are T images in the training set, then at the location (i, j) the mean-surface
normal direction is

n̂(i, j) =
n̄(i, j)

||n̄(i, j)|| (1)

where

n̄(i, j) =
1
T

T∑
k=1

nk(i, j) (2)

On the unit sphere, the surface normal nk(i, j) has elevation angle θk(i, j) = π
2 −

arcsin nz
k(i, j) and azimuth angle φk(i, j) = arctan ny

k(i,j)

nx
k(i,j) , while the mean surface

normal at the location (i, j) has elevation angles θ̂(i, j) = π
2 − arcsin n̂z(i, j) and

azimuth angle φ̂(i, j) = arctan n̂y(i,j)
n̂x(i,j) .

To construct the azimuthal equidistant projection we proceed as follows. We
commence by constructing the tangent plane to the unit-sphere at the location
corresponding to the mean-surface normal. We establish a local co-ordinate sys-
tem on this tangent plane. The origin is at the point of contact between the
tangent plane and the unit sphere. The x-axis is aligned parallel to the local
circle of latitude on the unit-sphere.

Under the azimuthal equidistant projection at the location (i, j), the surface
normal nk(i, j) maps to the point with coordinates vk(i, j) = (xk(i, j), yk(i, j))T .
The transformation equations between the unit-sphere and the tangent-plane co-
ordinate systems are

xk(i, j) =k′ cos θk(i, j) sin[φk(i, j) − φ̂(i, j)] (3)

yk(i, j) =k′
{

cos θ̂(i, j) sin φk(i, j) − sin θ̂(i, j) cos θk(i, j) cos[φk(i, j) − φ̂(i, j)]
}
(4)

where cos c = sin θ̂(i, j) sin θk(i, j)+cos θ̂(i, j) cos θk(i, j) cos[φk(i, j)−φ̂(i, j)] and
k′ = c/ sin c.

Thus, in Figure 1, CP ′ is made equal to the arc CP for all values of θ.
The projected position of P , namely P ′, therefore lies at a distance θ from the

θ
C O

PP'

Fig. 1. The azimuthal equidistant projection
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centre of projection and the direction of P ′ from the centre of the projection is
true. The equations for the inverse transformation from the tangent plane to the
unit-sphere are

θk(i, j) = sin−1

{
cos c sin θ̂(i, j) − 1

c
yk(i, j) sin c cos θ̂(i, j)

}
(5)

φk(i, j) =φ̂(i, j) + tan−1 ψ(i, j) (6)

where

ψ(i, j) = (7)⎧⎪⎨⎪⎩
xk(i, j) sin c/(c cos θ̂(i, j) cos c − yk(i, j) sin θ̂(i, j) sin c) if θ̂(i, j) �= ±π

2

−xk(i, j)/yk(i, j) if θ̂(i, j) = π
2

xk(i, j)/yk(i, j) if θ̂(i, j) = −π
2

and c =
√

x2 + y2.

2.2 Point Distribution Model

For each image location the transformed surface normals from the T different
training images are concatenated and stacked to form two long-vectors of length
T . For the pixel location indexed (i, j), the first of these is the long vector with
the transformed x-co-ordinates from the T training images as components, i.e.

Vx(i, j) = (x1(i, j), x2(i, j), ..., xT (i, j))T (8)

and the second long-vector has the y co-ordinate as its components, i.e.

Vy(i, j) = (y1(i, j), y2(i, j), ..., yT (i, j))T (9)

As the equidistant azimuthal projection involves centering the local co-ordinate
system, the mean long-vectors over the training images are zero. If the data is
of dimensions M rows and N columns, then there are M ×N pairs of such long-
vectors. The long vectors are ordered according to the raster scan (left-to-right
and top-to-bottom) and are used as the columns of the (2MN)×T data-matrix

D = (Vx(1, 1)|Vy(1, 1)|Vx(1, 2)|Vy(1, 2)| . . . |Vx(M, N)|Vy(M, N))T (10)

The covariance matrix for the long-vectors is the (2MN) × (2MN) matrix
L = 1

T DDT . We use the numerically efficient snap-shot method of Sirovich
[14] to compute the eigenvectors of L. Accordingly, we construct the matrix
L̂ = 1

K DT D. The eigenvectors êi of L̂ can be used to find the eigenvectors
ei of L using ei = Dêi. We deform the equidistant azimuthal point projec-
tions in the directions defined by the 2MN × K matrix P = (e1|e2| . . . |eK)
formed from the leading K principal eigenvectors. This deformation displaces
the transformed surface normals on the local tangent planes in the directions
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Fig. 2. Projection of points on the unit sphere to points on the tangent plane at the

mean point

defined by the eigenvectors P. If b = (b1, b2, ...., bK)T is a vector of parame-
ters of length K, then since the mean-vector of co-ordinates resulting from the
equidistant azimuthal projection is zero, the deformed vector of projected co-
ordinates is vb = Pb. Suppose that vo is the vector of co-ordinates obtained
by performing the azimuthal equidistant projection on an observed field of sur-
face normals. We seek the parameter vector b that minimises the squared error
E(b) = (vo − PT b)T (vo − PT b). The solution to this least-squares estimation
problem is b∗ = PT vo. The best fit field of surface normals allowed by the
model is v∗

o = PPT vo. The deformed vector of azimuthal equidistant projection
co-ordinates can be transformed back into a surface normal on the unit sphere
using the inverse azimuthal equidistant projection equations given above.

Figure 2 illustrates this process. On the left a distribution of surface normals
at one pixel in a model is shown as points on the unit sphere. The mean direction
is shown as a red point. On the right the azimuthal equidistant projection of the
points is shown with the mean point as the centre of projection. The first PCA
axis is shown by the black line labelled PCA1. This line corresponds to a great
circle on the sphere through the mean direction which minimises the spherical
distance to each point.

3 Fitting the Model to Intensity Images

Once trained, the statistical model represents the space of valid surface shapes.
We can exploit this prior knowledge in order to help resolve the ambiguity in
the shape-from-shading process. We do this using an iterative approach which
can be posed as that of recovering the best-fit field of surface normals from the
statistical model, subject to constraints provided by the image irradiance equa-
tion. According to Worthington and Hancock [12], when the surface reflectance
follows Lambert’s law, then the surface normal is constrained to fall on a cone
whose axis is in the light source direction and whose opening angle is the inverse
cosine of the normalised image brightness. This method commences from an
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initial configuration in which the surface normals reside on the irradiance cone
and point in the direction of the local image gradient. The statistical model is
fitted to recover a revised estimate of the surface normal directions. The best-fit
surface normals are projected onto the nearest location on the irradiance cones.
This process is iterated to convergence, and the height map for the surface re-
covered by integrating the final field of surface normals using the method of
Frankot and Chellappa [15].

In the remainder of this subsection, we begin by briefly introducing the geo-
metric shape-from-shading approach of Worthington and Hancock [12]. We then
show how our statistical model may be integrated into this framework by pro-
viding a statistical update process for the field of surface normals.

3.1 Geometric Shape-from-Shading

If I is the measured image brightness, then according to Lambert’s law I = n.s,
where s is the light source direction. In general, the surface normal n can not
be recovered from a single brightness measurement since it has two degrees of
freedom corresponding to the elevation and azimuth angles on the unit sphere.
In the Worthington and Hancock [12] iterative shape-from-shading framework,
data-closeness is ensured by constraining the recovered surface normal to lie on
the reflectance cone whose axis is aligned with the light-source vector s and
whose opening angle is α = arccos I. At each iteration the surface normal is free
to move to an off-cone position subject to smoothness or curvature consistency
constraints. However, the hard irradiance constraint is re-imposed by rotating
each surface normal back to its closest on-cone position. This process ensures
that the recovered field of surface normals satisfies the image irradiance equation
after every iteration.

Suppose that (n′)l(i, j) is an off-cone surface normal at iteration l of the
algorithm, then the update equation is

nl+1(i, j) = Θ(n′)l(i, j) (11)

where Θ is a rotation matrix computed from the apex angle α and the an-
gle between (n′)l(i, j) and the light source direction s. To restore the sur-
face normal to the closest on-cone position it must be rotated by an angle
θ = α − arccos

[
(n′)l(i, j).s

]
about the axis (u, v, w)T = (n′)l(i, j) × s. Hence,

the rotation matrix is

Θ =

⎛⎝ c + u2c′ −ws + uvc′ vs + uwc′

ws + uvc′ c + v2c′ −us + vwc′

−vs + uwc′ us + vwc′ c + w2c′

⎞⎠ (12)

where c = cos(θ), c′ = 1 − c and s = sin(θ).
The framework is initialised by placing the surface normals on their re-

flectance cones such that they are aligned in the direction opposite to that of the
local image gradient. We use the irradiance cone constraint to fit our statistical
model of surface normal variation to image brightness data.
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3.2 Combining the Statistical Model and Geometric SFS

Our approach to fitting the model to intensity images uses the fields of surface
normals estimated using the geometric shape-from-shading method described
above. This is an iterative process in which we interleave the process of fitting
the statistical model to the current field of estimated surface normals, and then
re-enforcing the data-closeness constraint provided by Lambert’s law by mapping
the surface normals back onto their reflectance cones. The algorithm can be
summarised as follows:

1. Calculate an initial estimate of the field of surface normals n by placing each
normal on its reflectance cone in the direction of the negative local intensity
gradient.

2. Each normal in the estimated field n undergoes an azimuthal equidistant
projection (Equations (3) and (4)) to give a vector of transformed coordi-
nates vo.

3. The vector of best fit model parameters is given by b = PT vo.
4. The vector of transformed coordinates corresponding to the best-fit param-

eters is given by v′ = (PPT )vo.
5. Using the inverse azimuthal equidistant projection (Equations (5) and (6))

find the off-cone best fit surface normal n′ from v′.
6. Find the on-cone surface normal n′′ by rotating the off-cone surface normal

n′ using Equation (11).
7. Test for convergence. If

∑
i,j

arccos [n(i, j).n′′(i, j)] < ε, where ε is a predeter-

mined threshold, then stop and return b as the estimated model parameters
and n′′ as the recovered needle map.

8. Make n = n′′ and return to step 2.

4 Experiments

In this Section we present experiments with our method. There are four elements
to this study. We commence by comparing the models obtained when range
images are used to provide the training data. Second, we show the results of
fitting the model to intensity data, and show the surface height data that can
be reconstructed from the fitted fields of surface normals. Third, we illustrate
how the fitted models can be used synthesise novel facial views.

4.1 Training the Model

In this section we describe how our model is constructed from real-world data.
We commence by building a “ground truth” model using fields of surface normals
extracted from range data. This allows us to show the utility of the model in cap-
turing facial shape in a compact manner when trained on relatively ‘clean’ data.

The training set consisted of high resolution 3D scans of 100 male and 100
female subjects with a neutral expression. The scans were collected using a
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Mode −3σ Mean +3σ

1

2

3

4

5

Fig. 3. The first five modes of variation of a statistical surface normal model trained

on a set of facial needle maps extracted from range data. The mean face is shown in the

central column and ± 3 standard deviations along each of the first 5 principal modes

of variation are shown in the left and right columns
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CyberwareTM 3030PS laser scanner. Each facial surface was aligned with a ref-
erence face using an off-the-shelf package (DeltaTM from FarField Technology).
This software uses a two-step, non-rigid registration algorithm which uses man-
ually placed landmarks to produce an initial coarse registration. Subsequently
the surface data itself is used to complete a fine registration. Fields of surface
normals were extracted by orthographically projecting the 3 surface normal com-
ponents onto a view plane positioned fronto-parallel to the aligned faces. These
needle maps were used to investigate a statistical surface normal model trained
on ground truth range data.

In Figure 3 we show the first 5 modes of variation of this model. In each case
we deform the points under azimuthal equidistant projection by ±3 standard
deviations along each of the first 5 principal axes. We then perform the inverse
azimuthal equidistant projection before reilluminating the resulting needle maps
with a point light source situated at the viewpoint and Lambertian reflectance.

The modes encode shape only, since the needle maps are invariant to illumi-
nation conditions and the training set contained no variation in expression. A
number of the modes appear to correspond to obvious facial characteristics, for
example mode 1 encodes head size and also seems to be correlated with gender.
This is manifested in the broader jaw, brow and nose in the positive direction,
all of which are masculine features. The fourth mode encodes the difference be-
tween long narrow faces and short wide faces, whereas the fifth mode encodes
fat versus thin with a ‘double chin’ evident in the negative direction.

Figure 4 shows the eigenvalue associated with each of the decreasingly sig-
nificant principal components. This shows that much of the model variance is
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Fig. 4. Plot of eigenvalue versus eigenmode
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captured by the first few modes. These principal components provide a low
dimensional parameterisation of facial needle maps. In addition, because they
only model the underlying shape they capture appearance in a sufficiently flex-
ible manner to be able to generalise to ‘out-of-sample’ faces. This means nee-
dle maps not included in the training set can be accurately represented in a
low dimensional space. A similar observation was made by Atick et al. [4] for
facial surfaces. Notably the same is not true for ‘black box’ intensity based
approaches such as Eigenfaces [16] or Active Appearance Models [17], which
jointly model variation in illumination and reflectance properties as well as in
identity.

In order to quantify this generalisation ability, we re-trained the model using
a subset of the complete training set (180 needle maps). We then calculated
the reconstruction error in representing the remaining 20 needle maps using this
reduced model and found that the average angular percentage relative error in
surface normal direction was 3.66% with a variance of 0.13%.

Initial 1 Iteration 2 Iterations 5 Iterations 25 Iterations

Fig. 5. Behaviour of the iterative fitting process over 25 iterations. The first row shows

the recovered needle maps reilluminated by a light source with direction [-1 0 1]T . For

comparison the second row shows similarly reilluminated needle maps recovered by

the Worthington and Hancock algorithm. The third and fourth rows show the surfaces

recovered from n′ (third row) and n′′ (fourth row)
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4.2 Fitting the Model to Data

In this section we show how the statistical model may be fitted to intensity
data using the method outlined in Section 3. We commence by considering the
iterative behaviour of the algorithm. The top row of Figure 5 shows how a needle
map develops over 25 iterations of the algorithm. Since the needle maps satisfy
data-closeness at every iteration, they would all appear identical when rendered
with a light source from the original direction ([0 0 1]T ). For this reason in
the top row we show the needle maps reilluminated with a light source moved
along the negative x-axis to subtend an angle of 45◦ with the viewing direction.
After one iteration there is a significant global improvement in the recovered
needle map. Subsequent iterations make more subtle improvements, helping to
resolve convex/concave errors and sharpening defining features. For comparison
the second row shows the corresponding needle maps recovered using the original
curvature consistency constraint of Worthington and Hancock [12] reilluminated
in the same manner. Although there is a steady improvement in the quality of
the recovered normals, there are gross global errors as well as feature implosions
around features such as the nose.

In Figure 5 we also show the surfaces recovered from the current best fit
needle maps, n′, (third row) and the needle maps which satisfy data-closeness,
n′′, (bottom row) as the algorithm iterates. Surface recovery is effected using the
method of Frankot and Chellappa [15]. As one would expect, the imposition of
data-closeness results in errors in the recovered surface where there is variation in
albedo, most notably around the eyes and eye-brows. In both sets there is a clear
improvement in the recovered surface as the algorithm iterates. The implosion
of the nose is corrected, the surface becomes smoother and finer details become
evident, for example around the lips.

4.3 Synthesising Novel Views

In Figure 6 we show the surfaces recovered from the best fit needle maps. In the
first and third rows the surfaces are shown rotated 30◦ about the vertical axis.
The surfaces are rendered with Lambertian reflectance and an estimated albedo
map. The light source remains fronto-parallel with respect to the face (i.e. from
the original direction). The resulting synthesised images are near photo-realistic
under a large change in viewpoint. Certainly, the results are comparable with
those of Georghiades et al. [3] in which 7 input images were required per subject.
Rows 2 and 4 of Figure 6 show the meshes of the recovered surfaces to allow
inspection of the recovered shape alone. In Figure 7 we demonstrate that the
recovered surface is sufficiently stable to synthesise images in both novel pose and
novel illumination. We show the surface of subject 8 rendered as in the previous
figure, except that the light source is circled from left profile to right profile.

5 Conclusions

We have shown how a statistical model of shape may be constructed from fields
of surface normals using the azimuthal equidistant projection. We demonstrated
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Fig. 6. Surfaces recovered from the ten subjects in the Yale B database. In the first

and third rows, the surfaces are rendered with Lambertian reflectance and are shown

rotated 30◦ about the vertical axis. The light source remains fronto-parallel with respect

to the face. In the second and fourth rows the surface meshes are shown rotated 40◦

about the horizontal axis

Fig. 7. Surface recovered from subject 8 of the Yale B database. The surface is again

rendered with Lambertian reflectance and rotated 30◦ about the vertical axis. The light

source is circled from full left profile to full right profile with respect to the face

that such a model trained on facial needle maps captures facial shape in a com-
pact manner and is capable of generalising to out-of-sample faces.

The model may be fitted to image brightness data using an iterative method.
The method alternates between surface normal estimation using a geometrical
shape-from-shading method and fitting a statistical model to the field of surface
normals. This process can be posed as that of recovering the best-fit field of
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surface normals from the statistical model, subject to constraints provided by
the image irradiance equation. The method proves rapid to converge, and delivers
realistic surfaces when the fields of surface normals are integrated.

Our future plans revolve around placing the iterative process in a statistical
setting using the EM algorithm and a von-Mises distribution to model the like-
lihood for the surface normal data. We also plan to develop ways of aligning the
model with images which are not in a frontal pose.
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Abstract. There are various segmentation and surfacing methods to
create CAD models from measured data. First the difficulties of creating
a good surface structure over a polygonal mesh are investigated, fol-
lowed by investigating the most important approaches according to the
amount of user interaction, computational efficiency and surface quality.
References to commercial systems are also added. The focus of the paper
is to present (i) automatic surfacing and (ii) functional decomposition.
New demands and emerging technologies are also identified to trace out
current trends in digital shape reconstruction.

1 Introduction

There is a rapidly growing demand to represent 3D objects in digital form. Com-
plex computer models can be defined by a sequence of commands in CAD sys-
tems, but in many applications ‘appropriate’ digital replicas of existing physical
objects are needed. The technological discipline that converts large measured
point clouds into CAD models is called ‘3D Digital Photography’ or ‘Digital
Shape Reconstruction‘ (DSR). We consciously avoid using the term ‘Reverse
Engineering’ due to its negative connotation and its use in other areas.

We will investigate state-of-the-art solutions to this conversion process, and
in particular, segmentation and surface generation. We assume that after data
capture, the partial scans have been aligned and merged. The subsequent prepro-
cessing operations include mesh repair, noise reduction, hole filling, smoothing
and decimation. As a result, a triangular polygonal mesh is obtained that is
the first (piecewise linear) approximation of the object. For reviewing recent
advances in data acquisition and mesh processing, see [6, 13, 25].

Polygonal representations are—in fact—adequate for many applications; take
natural (organic) objects formed by the laws of nature, or artistic objects cre-
ated by human artists. There are several operations where the discretized repre-
sentation is sufficient—graphical rendering, stereo-lithography or finite-element
analysis. In these cases the structure of the object and the surface quality are
not particularly important.

Engineering objects are created by human engineers, driven by different re-
quirements of form and function. These objects obey physical laws (e.g. turbine
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blades); and/or satisfy special aesthetic requirements dictated by fashion (e.g.
car bodies or consumer goods); and/or unite a set of mechanical constraints (e.g.
a multi-axis gear box). For high-end engineering applications both the struc-
ture and surface quality are important, since these models will be exported into
CAD/CAM systems for redesign, manufacture and analysis.

There is large group of organic, artistic, and engineering objects, where
smooth and compact surface representations are needed, but rapid surfacing
has a much higher priority than perfectly reconstructing the structure. In these
cases, surface meshes of quadrilateral tiles are generated in an automatic manner.

In this paper, we deal with the problems of segmenting and approximating
polygonal meshes. Approaches differ by the amount of user interaction, the ef-
ficiency of the computations and the quality of the surfaces. We will discuss
how rapid surfacing methods evolve to obtain better surface qualities, and how
functional decomposition techniques evolve to obtain high-quality surfaces in a
more efficient manner.

2 Segmentation and Surfacing

2.1 Partitioning the Mesh

The key issue in digital shape reconstruction is segmentation, that is, how to
partition the polygonal mesh into smaller regions. This corresponds to the yet
unknown CAD model we want to create. The most widely accepted data struc-
ture is boundary representation (B-rep), which contains a collection of faces, each
bounded by one or more edge-loops. Each region is the pre-image of a face in the
final model; each face lies on a surface that was created by approximating the
points of the given region. In order to achieve good surface quality the regions
must be well-partitioned—only then can surface characteristics be recognized
and appropriate connections be built.

2.2 Regions and B-Rep Models

Prior to investigating the types of region structures yielded by different DSR
methods, we briefly characterize B-rep models from topological and geometrical
points of view.

Faces. The simplest face structures cover the object with a uniform face-set,
such as triangular meshes or quadrilateral tiles. A more general face structure
permits n-sided faces with different numbers of sides. In addition to simply con-
nected faces with a single perimeter loop, faces with internal loops often occur.

Face connections. At Face-to-Face connections, the corners of the neighboring
faces are identical. At Face-to-Multiple-Face connections the edges of the adja-
cent faces are not identical, and a corner point may fall into the middle of the
edge of the opposite face, thus creating so-called T-nodes.

Surfaces are given either in simple analytic form (natural quadrics and tori) or in
parametric form using control points (Bezier and NURBS). The method of sur-
face generation can be an important issue for high quality shape reconstruction.
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Extrusions, rotational symmetries, or complex sweeps should be reconstructed
and archived utilizing the related shape characteristics. In CAD, function and
form are determined mainly by the relatively large primary surfaces. Feature
surfaces are generally smaller and play a secondary role—they smoothly con-
nect the adjacent primaries. The most frequent feature types are blends (fillets)
and free-form steps.

Continuity. There is extensive literature on various types of continuity including
parametric, geometric and numerical continuity [15]. Geometric continuity is in-
terpreted by incident points, tangent planes and principle curvature vectors. For
numerical continuity, we take the two adjacent faces and compute the difference
of normal vectors and/or curvature vectors along the corresponding boundary
points. Then we check whether they remain within the prescribed tolerances (NG1

or NG2). It is important to distinguish between internal and connecting continu-
ity. For example, trimmed bi-cubic NURBS surfaces are internally C2 continuous,
but along their common boundary they are joined only with numerical continu-
ity. (Otherwise, we have to represent the exact mathematical curves by very high
degree equations, in non-standard format.) To match two trimmed surfaces with
higher degree numerical continuity is a difficult computational issue.

Quadrilaterals or trimmed faces. A non-four-sided face with internal loops is
either composed as a collection of four-sided surface elements, or we have to
use trimming curves to cut out a valid part from an analytic or parametric
surface. In the first case, the main difficulty is subdivision and assuring smooth
connections between the sub-faces. In the second case, tolerance control of the
‘curves on surfaces’ and constructions to stitch the adjacent surface elements
require special care.

2.3 Difficulties in Segmentation

As explained earlier the quality of segmentation strongly influences the quality
of the final surface. Data sets are noisy and the edges of triangles on the mesh
are generally not aligned with the edges of the faces. While a human engineer
can immediately recognize the face structure of the object and can virtually
partition it, DSR systems may need to perform a complex ‘trial and error’ pro-
cess. Alternatively, they may ask for a certain amount of user assistance. A few
related issues are discussed as follows.

Sharp edges. The detection of sharp edges is not obvious, since the measured
data points rarely lie on the ideal edge, moreover, data capture is error prone
along strong discontinuities. Extra effort is needed to extract sharp edges and
repair the mesh accordingly, see for example [2].

Smooth edges. While sharp edges must be located at the exact position, the
problem with smooth edges is that their ideal location is not known and it is hard
to detect them. If we include points which should not be included, or miss points
which should be included, surface quality will be poor. In Figure 1(a), if the exact
circular boundary between the middle torus and right cylindrical regions is not
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(a) (b)

Fig. 1. Two examples of segmenting along smooth edges that will result in poor surface

fitting

detected, it is impossible to reconstruct them in their best form, they will be
roughly approximated. (We return to this topic later by discussing constrained
surface fitting.) In Figure 1(b), if the smooth boundary of the variable radius
rolling ball blend is not well-located the primary regions will accidentally contain
data points from the blend, and the blend region will contain primary data
points, killing surface quality.

Artificial edges. When dealing with complex regions containing hole loops and/or
when only quadrilateral tiles are permitted, the regions need to be split into
smaller ones by artificial edges. Thus surface portions which functionally would
belong together are separated, and only lower degree, (numerical) continuity can
be achieved. This results in loss of quality and preventing us to perform global
surface fairing.

Aligned free-form patches. The most widely used free-form surfaces are repre-
sented by a regular grid of control points. They are given in r = r(u, v) para-
metric form, and map a planar rectangle into a curved 3D quadrilateral. This
representation is perfect for shapes where the control points and the ‘intrinsic
curvature variation of the shape’ can be aligned to each other; however, quality
gets worse when no such natural assignment exists. Figure 2 shows two exam-
ples: compare the evenness of the curvature distribution when the control points
are aligned or non-aligned.

Hybrid patches. It is a crucial quality issue to find such a segmentation where
the highly curved and relatively flat parts can be separated. In this case the
total number of control points will be optimal, the surface quality improves and
the models will be lighter. To approximate the flat parts, relatively few con-
trol points will be used and a dense grid of control points are needed only for
the highly-curved parts. For hybrid patches the regions have not been sepa-
rated by curvature, and they will be approximated inefficiently since to fit the
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(a) (b) (c)

Fig. 2. (a) Two quadrilateral surfaces (b) Control points aligned (top) and non-aligned

(bottom) (c) Related curvature distributions

(a) (b) (c) (d)

Fig. 3. (a,b) Hybrid curvature layout and control points (c,d) High curvature layout

and control points

highly curved portions, superfluously full rows or columns need to be inserted
into the control point grid. There is ongoing research to find alternative surface
representations for non-regular structures reflecting the curvature changes, see
subdivision surfaces [32] or T-splines [33], but these have not yet been integrated
into commercial CAD/CAM systems.

2.4 Basic Approaches

There are five approaches that can be found in commercial systems and are
worth analyzing from various points of view: (i) manual creation of quadrilat-
erals, (ii) manual segmentation with CAD functionality, (iii) automatic (rapid)
creation of quadrilaterals, (iv) functional decomposition, and (v) template-based
segmentation. This classification is not clear-cut, and contains overlaps, but it
helps to gain a better understanding. A simple example, a portion of a CAD
model, was chosen (Figure 4(a)) to show different surface structures. It consists
of two trimmed surfaces—one planar and one free-form—being connected by a
fillet surface.
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(a) (b)

(c) (d) (e)

Fig. 4. (a) Simple CAD model, (b) Manually created quadrilaterals, (c) Automatic

tiling, (d) Functional decomposition, (e) Templates

Manual creation of quadrilaterals. The main idea is to let the user drive and con-
trol the creation of a quadrilateral curve network. Typical representatives include
[8, 26, 28, 29, 30]. Difficulties include the proper location of smooth boundaries,
see middle blend in Figure 4(b). The lack of the fitting capability for trimmed
regions leads to artificial subdivisions, which worsens internal continuity. The
user has to fix—in advance—the boundaries of the four-sided surfaces; interpo-
lating these and approximating the internal data points while also joining and
tweaking the neighboring surface elements is difficult and may lead to undesir-
able surface artifacts. Finally, to create complex parts with this approach can
be cumbersome.

Manual segmentation with CAD functionality. There are systems that offer a wide
range of CAD operations to overcome some of the above mentioned deficiencies.
The primary interest of these systems is conceptual design or styling. Only certain
parts of the object are reconstructed using the point data; and the remaining parts
are defined independently by standard CAD operations. Typically four-sided sur-
faces are fitted which are later trimmed by auxiliary surfaces or as a result of other
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operations. Problems may occur at connecting two adjacent surfaces: tweaking
can improve connection quality, but may destroy internal smoothness.

The most advanced manual systems with advanced CAD are [1, 16, 17, 28].
These systems also offer special tools to obtain Class A surfaces mainly used
in the automotive industry. There is no exact mathematical definition of Class
A; loosely speaking the surface curvature must be evenly distributed across the
majority of the model. These systems tweak the control points or modify a set
of section curves in a long tedious process until the desired, visually pleasing
surface quality is achieved. The work is based on continuous visual feedback
using isophotes and reflection lines.

Automatic (rapid) creation of quadrilaterals. This approach is capable of han-
dling very detailed parts with minimal user assistance in a reasonably efficient
manner, see [14, 28, 30]. Typically, a special quadrilateral patch layout is com-
puted using ‘Face-to-Face’ NURBS tiles, with watertight G1 (or G2) continuity,
see Figure 4(c). If necessary, the user can modify the tile boundaries or rear-
range the tiles to obtain more pleasing patch layouts. Automatic surfacing is
mostly a self-contained solution that provides reasonably good surface models
in a relatively short time. The problems of artificial subdividing edges are also
valid as in the previous approaches. The lack of good alignment can also become
a problem.

Functional decomposition. The basic purpose of the fourth approach is to parti-
tion the mesh into faces as it might have been created by a CAD program. While
in manual surfacing the user first defines the patch boundaries, here these are
to be determined automatically during surface fitting by the DSR system. The
process is based on a rough segmentation of the mesh: the created regions only
reflect the topological structure and record their dependencies. It is important
that the regions directly correspond to the trimmed faces of the final model; so
there is no need for internal subdivisions. Moreover, the original surfaces can
also be reproduced in untrimmed form as well [14].

For functional decomposition it is important to classify the regions as pri-
mary or connecting features and perform surface fitting in this order. Quality
gains are possible only if special, constrained fitting algorithms are applied, see
later. The result of the ideal process is illustrated in Figure 4(d) where the orig-
inal surface elements—planar, free-form, fillet—are reconstructed having ‘well-
located’ boundaries. This method provides the best possible internal surface
quality, though there is only numerical continuity between the trimmed faces, as
in standard CAD systems. Another disadvantage is that a certain amount of user
assistance is needed for creating the regions and orienting the trimmed paramet-
ric surfaces. For very complex objects with hundreds of faces this method cannot
compete with the automatic approach, though partial success has been reported
for reconstructing conventional objects bounded exclusively by planes, natural
quadrics and blends [3].

Templates. There are several applications when the structure of the object is
known and can be retrieved. For example, somebody may want to reconstruct
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(a) (b)

Fig. 5. Decimated triangulation and the final mesh of quadrilaterals

a family of objects with different dimensions; or create a similar, but altered
car body panel; or generate shapes that look different, but are identical from
a structural point of view, such as human faces. In these situations, the use of
templates is recommended. A template is a curve network that carries the region
structure and the best alignment with the existing polygonal mesh needs to be
found. In Figure 4(e) the boundaries of the planar face and the vertical faces
need to be snapped to the mesh, the hole loop needs to be displaced to some
extent, and the fillet boundaries should be relocated according to the previous
constraints. The template based approach naturally coexists with the manual,
rapid surfacing, and functional decomposition approaches.

3 Automatic (Rapid) Surfacing

Automatic tiling. Automatic (rapid) surfacing is based on the automatic con-
struction of a quadrilateral tiling. In order to produce appropriate partitioning
for surface fitting, the tiling should adapt to the features of the shape by following
its curvature, and minimize the number of non-degree-4 corners. Efforts in the
past have produced various methods, including Voronoi-based methods [9] and
decimation-based methods [23]. In the latter method, a decimated triangulation
is used to construct the tiling [10], which is then remapped to the original model,
see Figure 5(a). Various quad-mesh generation methods can also be used to pro-
duce a tiling, including advancing front methods [7] and triangle-to-quadrilateral
mesh conversion [18].

In some situations, the tiling will not be sufficiently good, and further re-
structuring will be needed, as shown in Figure 5(b). Local or global operations
can be defined to restructure a portion of the layout [24], and can be applied
manually or automatically as a post-processing step. The resolution of the tiling
can be controlled by the level of decimation or by prescribing the number of
tiles. Figure 6 shows a car body panel approximated by two, G1 continuous,
quadrilateral meshes with target patch count 50 and 100.



New Trends in Digital Shape Reconstruction 403

(a) (b)

Fig. 6. Two automatic layouts by different patch counts, (a) 50, (b) 100

Patch layout relaxation. Due to remapping distortions, the resulting patch lay-
out may require improvement through relaxation [21]. The goals of the relax-
ation are to produce smooth curves that are well-distributed around the corners
where they meet. Various types of relaxation may be required depending on
the type of patch boundary. Boundaries that lie along or beside highly-curved
features should be smoothed while maintaining their proximity to the feature;
patch boundaries that lie in the middle of relatively flat regions can be relaxed
without constraints.

Strengths and weaknesses. To sum it up: by the decimation based contour ex-
traction and automatic tiling users can process large and complex models in
an efficient way with reasonably tight tolerance and at least tangent plane con-
tinuity. If the automatic layout is not good enough further manual operations
are needed which may take a longer time. The region boundaries are often not
properly aligned, and the surface quality is poorer since contours may run in the
middle of highly curve areas. Applying uniform control point density, though
efficient, is not optimal. In the next paragraph we introduce a new concept in
evolution, which can preserve the advantages of rapid surfacing, but makes sig-
nificant steps towards overcoming these deficiencies.

Feature-based segmentation. Rapid surfacing systems make it possible to directly
incorporate smooth or sharp edges into the decimated structure and build up
the best layout accordingly. In the new approach the original triangular mesh
is segmented directly. It is possible to extract locally estimated geometric prop-
erties using a set of points or triangles around a given vertex of the mesh, see
for example [5, 27]. These are characterized by one or more numerical values
called indicators. Indicators may come from differential geometry, such as the
normal vector of the local tangent plane or the estimated mean curvature value.
They may characterize more complex properties, such as the error of a fitted
least-squares surface or the best fit direction of an extrusion or a local rotational
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(a) (b)

Fig. 7. Automatic (a) feature-based segmentation, (b) feature boundary extraction

(a)

Fig. 8. Automatic feature-based segmentation

axis. Finally, they can highlight abstract properties, showing whether the point
is considered ‘similar’ to its neighboring points or not. Indicators help driving
automatic processes or giving visual hints to the user.

In order to deduce a consistent structure, good threshold values need to be
found, which is often difficult and requires user expertise. Thresholds strongly
depend on the quality of the scanned data and the shape of the object, and
often—due to variations in the shape—no appropriate global value exists. There
are new emerging techniques to separate highly curved and relatively flat regions
without explicit threshold setting while guaranteeing the consistency of the ob-
tained structures [11]. The result of the process is illustrated in Figure 7, where an
object is segmented into larger regions being separated by small strips of feature
regions (a). These strips (red) provide good initial estimates for the boundaries
of the features which can later be incorporated into the final layout (b).
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(a) (b)

Fig. 9. (a) Feature-based patch layout, (b) Feature-based adaptive fitting

As it can be seen, this sort of segmentation creates a structure which is
much closer to a standard CAD model representation than earlier. It provides
significant improvements in alignment and reduces the number of patches with
hybrid curvature. Another illustration is a feature-based layout for the previous
car body panel in Figure 8. The number of patches is roughly the same as before
(100), but their distribution is different reflecting the intrinsic characteristics
of the shape. Surface quality and accuracy become better, and the need for
manual rearrangements is drastically reduced. The number of control points can
be significantly reduced using adaptive surface fitting methods to the highly
curved and flat parts, as shown in Figure 9.

4 Functional Decomposition

The functional decomposition paradigm attempts to reproduce the design intent
of CAD models from point clouds having the assumption that the object has
been or might have been defined by a CAD system.

Natural extensions. We deal with the most general region structure with an
arbitrary number of edges and an arbitrary number of internal loops. For fur-
ther CAD/CAM processing, it is essential to reconstruct the original untrimmed
surfaces with natural extensions within and outside the region boundaries. An
example is given in Figure 10, where a NURBS surface is generated based on a
partial point set. Looking at its curvature map the region boundaries can hardly
be detected.

Curve networks. As it was explained earlier, in manual systems the user curve
network not only defines the region structure, but at the same time pins down
the surface boundaries over the mesh. In functional decomposition the network
only roughly defines the regions and the final system network will be computed
by the system. This is topologically identical to the user network, but its shape
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(a) (b) (c)

Fig. 10. (a) Trimmed point region (b) Extended surface (c) Curvature map

is optimized and the curves are repositioned. The boundary curves are not ‘a
priori’ fixed mesh curves, but curves on surfaces, (e.g. [31]) obtained through
sequential surface fitting steps.

Dependencies. An important characteristic of functional decomposition is that
adjacent surfaces depend on each other. This also corresponds to the logic of
CAD/CAM systems: first the large primary surfaces (PR) are defined, followed
by creating connecting features (CF) and finally N -patches (NP) or vertex
blends. An example is shown in Figure 11(b), where the object consists of four
primaries—PR.Top, PR.Bottom, PR.Side, PR.Strip, two connecting features—
CF1 and CF2, and two N -patches—NP.Lamp and NP.Small. CF1 is a free-form
step, CF2 is a rolling-ball blend. NP.Lamp depends only on PR.Bottom, having
its perimeter loop constrained to lie on it. NP.Small depends on four surfaces,
namely PR.Bottom, PR.Side, PR.Strip and CF2.

Detect surface types. It is an emerging need to represent surfaces with the best
possible surface representation. Related hypotheses can be automatically formed
having the segmented point regions and their indicator sets, see also [3]. If this
type belongs to some analytic, translational or rotational type, a single best fit
step is performed instead of using iterative free-form fitting. For example, if we
have a cylindrical point set, we check the tolerances of the best cylinder com-
puted by the system. If it is out of tolerance we have to reclassify the region to be
conical, rotational or eventually free-form, and repeat the fitting steps. Free-form
surfaces are different in this sense: it is always possible to insert further degrees
of freedom and fit a surface iteratively until the required accuracy is reached.

Surface fitting with NURBS. Generally the squared distances between data
points and the corresponding points of an unknown surface are minimized. For
NURBS, there exist infinitely many ‘possible’ surfaces, even if we fix the de-
gree of the patches. The control point configuration, i.e., the number of rows
and columns are unknown. Their ‘best’ locations in space are also unknown and
the parametrization of the data points (i.e., the best correspondence) is also
unknown. Furthermore to find a good ratio between tight fitting and an even
curvature distribution is difficult. The ratio is unknown and shape dependent.
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(a) (b)

(c) (d)

Fig. 11. Car body panel: (a) numerical curvature map, (b) region structure, (c) recon-

struction with untrimmed surfaces (Top and Bottom), (d) final trimmed model

The only thing we know is that very tight fitting kills smoothness, and over-
smoothed surfaces cannot closely approximate data points. So we face a very
complex, non-linear optimization problem, and there are many different mathe-
matical techniques to fit surfaces with high quality within an acceptable time.

Self-tuning algorithms. Many systems let the user to manually set the number
of control points. This is a simple solution: if the approximation error is too big,
the user sets a larger number and tries again. If the approximation error is within
the requested range, the user may try to refit with a smaller number of control
points and evaluate again whether the surface is still acceptable. Things get
complicated, or soon very tedious, when both the number of rows and columns
need to be set while having many surface elements with different local shape
characteristics.
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(a) (b) (c)

Fig. 12. (a) Region on a car body panel, (b) Fitting with loose tolerance; control net

and curvature map, (c) Fitting with tight tolerance

The real demand is to specify a distance tolerance for the whole shape, and
ask the system to iteratively optimize all the above parameters until the surface
approximates all the data points within tolerance. To reach this goal self-tuning
algorithms gain more importance [36]. In addition to the tolerance a so-called
outlier percentage is also needed to ignore noisy data points. Then by breaking
the process into linear subtasks, it is possible to iteratively compute the optimal
number of control points, their optimal 3D positions, an optimal parametrization
and a good smoothness weight, which will finally assure that the smoothest
possible surface is obtained while the tolerance criterion is still satisfied.

Automatic parametrization for irregular regions. There is another difference be-
tween fitting analytic and free-form surfaces. For analytic surfaces only the data
points within the trimmed region matter; for free-form surfaces the orientation
and initial parametrization of the parametric rectangle is also important. There
are four-sided regions where the assignment can be done in a natural way, but for
the general case, further information is needed. This can be computed through
the analysis of flattened 3D meshes in the domain plane, see for example [12, 20].

Special fitting algorithms improve quality. We have pointed out that specific sur-
face fitting algorithms yield better surface qualities. This is particularly true for
connecting features where not only the type-dependent fitting algorithms need
to be applied—say for rolling ball or constant range blends—but also further
constraints must be satisfied to smoothly join to already existing primary sur-
faces [19].

Constrained fitting for groups of surfaces. It is also an emerging request to detect
constraints between the individual faces of the object. For example, Figure 13
shows the well-known benchmark, where the object is bounded by conventional
surface elements and blends. To obtain the best surface quality, the three planar
point regions (light blue) with z-normal should be fit together, having related
constraints satisfied. Moreover, the axes of the conical surfaces (dark blue) should
also be constrained to be parallel to this z-axis. Constrained fitting is a relatively
new research area, with good results being reported for conventional geometry
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(a)

Fig. 13. Darmstadt benchmark: classified regions

[4, 37], but several problems remain unsolved where constraints need to be en-
forced for groups of free-form surface elements.

Beautifying surface models. The last emerging request is to beautify the obtained
models as much as possible. This is part of the previous constrained fitting
problem since regularities must be detected. At the same time our starting point
can be an already reconstructed geometric model. The main issue is how we
can make it better by recognizing likely local and global properties, such as
parallelism, concentricity, rotational or mirror symmetry. Results for a restricted
object class have been reported in [22].

5 Conclusion

There is an enormous ongoing effort in digital shape reconstruction. An ideal
system would automatically find the best-suited topological structure, would
recognize the most likely underlying surface types, would detect the appropriate
connecting elements and stitch them together into a single model with perfect
sharp and smooth edges. The system should combine the strengths of tiling
for artistic or highly detailed portions and functional decomposition for regions
following high end CAD design philosophies. The user interaction would be min-
imal and, of course, the system would produce high quality surfaces everywhere.
Such an ideal system does not exist yet, but there are alternative partial solutions
where there is significant progress in at least one of the above areas.

CAD systems extend their digital reconstruction functionality, DSR systems
tend to add more CAD functionality. Rapid surfacing systems can reproduce
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more and more complex parts without losing efficiency and tangent plane con-
tinuity. They move towards feature-based segmentation with more CAD-like
structures and surfaces, which leads to the generation of better surface models
with less user intervention. Functional decomposition approaches put empha-
sis on simplifying the creation of region structures, building dependencies and
providing stable algorithms to fitting and stitching smooth, trimmed regions.
Both the quality of the surfaces and the efficiency of the algorithms are improv-
ing. There are ongoing attempts to automate the detection of surface types and
fit accordingly using special fitting algorithms. This is often coupled with vari-
ous automatic and user-defined constraints for surface groups in order to assure
smooth connections and other regular properties. The authors believe that in
the not very distant future, it will be possible to merge the above partial solu-
tions into a single system, when we will get very close to the functionality of the
ultimate digital shape reconstruction system.
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Abstract. Expressions for the componentwise and normwise backward
errors at an arbitrary point on an algebraic curve are derived and the
formulae that relate them to the condition numbers are established. The
expressions for the condition numbers at a regular point that is near a
singular point are examined and it is shown that restrictions on their va-
lidity arise in this circumstance. In particular, the lowest order approx-
imation that is used when condition numbers are derived places tight
bounds on the maximum allowable perturbation on this class of point.
An example that illustrates this limitation is given.

1 Introduction

Geometric modelling requires that a large number of numerical operations be
performed on the equations that define curves and surfaces, and this has been
the motivation for extensive research into the numerical stability of curves and
surfaces that are defined in the Bernstein basis. This paper continues this inves-
tigation by considering some aspects of the numerical condition and backward
error of an arbitrary point on an algebraic curve.

Condition estimation and backward error analysis play an essential role in
numerical computation because the condition number of a problem is a measure
of the sensitivity of the solution to perturbations in the data, and the backward
error is a measure of the minimum distance between the problem whose solu-
tion is sought, and the problem whose solution has been computed [2]. These
concepts are well developed for linear algebraic and polynomial equations, and
Farouki and Rajan [1] have developed expressions for the componentwise condi-
tion number at regular and singular points on an algebraic curve. In this paper,
expressions for the componentwise and normwise backward errors at an arbi-
trary point on an algebraic curve are established, and the formulae that relate
them to the condition numbers are established.

A planar algebraic curve is defined by the zero set of a bivariate function
f(x, y),

f(x, y) =
m∑

i=1

aiφi(x, y) = 0, (1)

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 413–433, 2005.
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where a = {ai}mi=1 is the vector of coefficients, which are assumed to be real,
and φ(x, y) = {φi(x, y)}mi=1 is a vector of bivariate polynomial basis functions.
A polynomial of degree n in d variables has

(
n+d

d

)
coefficients, and since d = 2,

it follows that the number of coefficients in (1) is m = (n+2)(n+1)
2 .

The derivation of expressions for the condition numbers at a point on an
algebraic curve requires that a distinction be made between regular and singular
points, and these terms are now defined [3].

Definition 1. A point P on a curve f = 0 has multiplicity r if all partial
derivatives of f up to and including the (r − 1)-th vanish at P , but at least one
r-th partial derivative does not vanish at P .

This definition leads to the following definitions:

Definition 2. A point P with coordinates (xα, yα) on a curve f = 0 is regular
or simple if its multiplicity is 1:

�f =
[
fx fy

]
=
[

∂f
∂x

∂f
∂y

]
= [0 0

]
at x = xα, y = yα.

Definition 3. A point P with coordinates (xα, yα) on a curve f = 0 is singular
if its multiplicity is greater than 1.

For example, the point P on a planar curve has a singularity of multiplicity
2 if

�f =
[
fx fy

]
=
[
0 0
]

at x = xα, y = yα,

but one or more of the derivatives

∂2f

∂x2
,

∂2f

∂xy
and

∂2f

∂y2
,

do not vanish at P .
Expressions for the componentwise and normwise backward errors at a point

P on an algebraic curve are derived in Section 2, and expressions for the condition
numbers are reviewed in Section 3. It is shown that these two quantities are
related by a simple expression that is dependent on the multiplicity of P .

There exists an important difference between the condition numbers and
backward errors because the former require that the lowest order term in a
Taylor expansion be used, which necessarily imposes restrictions on the class
of point for which these formulae are valid. This feature of condition numbers
must be compared with the expressions for the backward errors, for which the
derivations do not require approximations. These restrictions on the class of
points for which the condition numbers are valid are considered in Section 4,
and an example that illustrates these limitations is given. Section 5 contains a
summary of the paper and a discussion of further work.
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Output spaceInput space

Forward errorBackward error

y = f(x)x

x + δx ŷ = f(x + δx)

Fig. 1. The forward and backward errors for y = f(x)

2 Backward Error

The difference between the forward error and backward error of a problem is
illustrated in Figure 1, which is reproduced from [2]. Specifically, the forward
error is measured in the output or solution space, and the backward error is
measured in the input or data space. The exact data x yields the exact value
y = f(x), and the perturbed data x̂ = x + δx yields the perturbed value ŷ =
f(x̂) = f(x + δx). The dotted line in Figure 1 represents the computation that
is performed.

The forward error is defined as the relative error in the solution,

|ŷ − y|
|y| ,

and the backward error is based on the observation that the computed solution
ŷ is the exact solution of the problem with perturbed data x̂. If it is assumed
that roundoff errors can be interpreted as errors in the data, then the combined
effects of these errors, and errors in the data, can be represented by x̂. It follows,
therefore, that although the exact or specified data is x, the solution of a problem
whose data is x̂ has been computed. The backward error is defined as

|x̂− x|
|x| =

|δx|
|x| ,

which is of the same form as the forward error, but measured in the input or
data space, rather than the output or solution space.

The backward error is defined for componentwise and normwise perturba-
tions, and these are considered in Sections 2.1 and 2.2 respectively.

2.1 Componentwise Backward Error

The componentwise backward error of a point (x̃0, ỹ0) on the curve (1) is defined,
and an expression for it is then derived.
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Definition 4. The componentwise backward error of the approximation (x̃0, ỹ0),
which may be complex, of the point (x0, y0) that lies on the curve f(x, y) = 0 is
defined as

ηc(x̃0, ỹ0) = min

{
εc :

m∑
i=1

ãiφi (x̃0, ỹ0) = 0 and |δai| ≤ εc |ai| ; ã = a + δa

}
,

where δa = {δai}mi=1 .

Theorem 1. The componentwise backward error of the approximation (x̃0, ỹ0),
which may be complex, of the point (x0, y0) that lies on the curve f(x, y) = 0 is
given by

ηc(x̃0, ỹ0) =
|f (x̃0, ỹ0)|∑m

i=1 |aiφi (x̃0, ỹ0)| . (2)

The perturbations in the coefficients that achieve this backward error are

δak = −
( |ak| f (x̃0, ỹ0)∑m

i=1 |aiφi (x̃0, ỹ0)|
)(

φk (x̃0, ỹ0)
|φk (x̃0, ỹ0)|

)
, k = 1, . . . , m, (3)

where (·) denotes the complex conjugate of (·).
Proof. By definition, ãi = ai + δai, i = 1, . . . , m, and thus

m∑
i=1

ãiφi (x̃0, ỹ0) =
m∑

i=1

aiφi (x̃0, ỹ0) +
m∑

i=1

δaiφi (x̃0, ỹ0)

= f (x̃0, ỹ0) +
m∑

i=1

δaiφi (x̃0, ỹ0) . (4)

By assumption, the term on the left hand side is equal to zero, and thus

|f (x̃0, ỹ0)| =
∣∣∣∣∣

m∑
i=1

δaiφi (x̃0, ỹ0)

∣∣∣∣∣
≤

m∑
i=1

∣∣∣∣δai

ai

∣∣∣∣ |aiφi (x̃0, ỹ0)|

≤ max
k

∣∣∣∣δak

ak

∣∣∣∣ m∑
i=1

|aiφi (x̃0, ỹ0)| .

It follows that

εc ≥ |f (x̃0, ỹ0)|∑m
i=1 |aiφi (x̃0, ỹ0)| ,

and the result (2) is established.
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Consider now the perturbations in the coefficients that achieve this backward
error. By definition, these perturbations must satisfy

ηc(x̃0, ỹ0) = min
{

εc : εc ≥
∣∣∣∣δak

ak

∣∣∣∣ , k = 1, . . . , m
}

, (5)

and (4) implies that they must also satisfy

f (x̃0, ỹ0) = −
m∑

i=1

δaiφi (x̃0, ỹ0) . (6)

Consider the perturbations, from (5), |δak| = ηc(x̃0, ỹ0) |ak|, or equivalently,

|δak| = |ak| |f (x̃0, ỹ0)|∑m
i=1 |aiφi (x̃0, ỹ0)| , k = 1, . . . , m. (7)

It must be verified that these perturbations also satisfy (6), and this is now
established.

It follows from (7) that δak is given by

δak =
akf (x̃0, ỹ0)∑m

i=1 |aiφi (x̃0, ỹ0)|hk (x̃0, ỹ0) , |hk (x̃0, ỹ0)| = 1, k = 1, . . . , m, (8)

where each of the functions hk (x̃0, ỹ0) is of unit magnitude and to be determined.
The substitution of this equation into the right hand side of (6) yields

f (x̃0, ỹ0) = −
∑m

k=1 akf (x̃0, ỹ0) φk (x̃0, ỹ0) hk (x̃0, ỹ0)∑m
i=1 |aiφi (x̃0, ỹ0)| ,

and this equation determines the functions hk (x̃0, ỹ0) , k = 1, . . . , m. It follows
that these functions must satisfy∑m

k=1 akφk (x̃0, ỹ0) hk (x̃0, ỹ0)∑m
i=1 |aiφi (x̃0, ỹ0)| = −1,

and thus

hk (x̃0, ỹ0) = − akφk (x̃0, ỹ0)
|akφk (x̃0, ỹ0)| , k = 1, . . . , m.

Equation (8) establishes the result (3).

2.2 Normwise Backward Error

Section 2.1 is extended from a componentwise perturbation in the coefficients to
a normwise perturbation in the coefficients.

Definition 5. The normwise backward error of the approximation (x̃0, ỹ0), which
may be complex, of the point (x0, y0) that lies on the curve f(x, y) = 0 is defined
as

ηn(x̃0, ỹ0) = min

{
εn :

m∑
i=1

ãiφi (x̃0, ỹ0) = 0 and ‖δa‖ ≤ εn ‖a‖ ; ã = a + δa

}
.
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Theorem 2. The normwise backward error, measured in the 2-norm, of the
approximation (x̃0, ỹ0), which may be complex, of the point (x0, y0) that lies on
the curve f(x, y) = 0 is given by

ηn(x̃0, ỹ0) =
|f (x̃0, ỹ0)|

‖φ (x̃0, ỹ0)‖ ‖a‖ , ‖·‖ = ‖·‖2 . (9)

The perturbations in the coefficients that achieve this backward error are

δai =
f (x̃0, ỹ0) gi

‖φ (x̃0, ỹ0)‖ , i = 1, . . . , m, (10)

where
gT φ (x̃0, ỹ0) = −‖φ (x̃0, ỹ0)‖ and ‖g‖ = 1.

Proof. The proof of this theorem follows closely that of Theorem 1. In particular,
since the term on the left hand side of (4) is equal to zero, it follows that

|f (x̃0, ỹ0)| =
∣∣∣∣∣

m∑
i=1

δaiφi (x̃0, ỹ0)

∣∣∣∣∣ ≤
(‖δa‖
‖a‖

)
‖a‖ ‖φ (x̃0, ỹ0)‖ .

Thus
|f (x̃0, ỹ0)|

‖a‖ ‖φ (x̃0, ỹ0)‖ ≤
‖δa‖
‖a‖ ≤ εn, (11)

and (9) follows.
The perturbations in the coefficients that achieve this backward error must

satisfy (6) and (11). Specifically, consider the perturbation vector whose norm
is given by

‖δa‖ = ηn(x̃0, ỹ0) ‖a‖ =
|f (x̃0, ỹ0)|
‖φ (x̃0, ỹ0)‖ ,

from which it follows that

δak =
f (x̃0, ỹ0) gk(x̃0, ỹ0)
‖φ (x̃0, ỹ0)‖ ,

where

‖g(x̃0, ỹ0)‖ =

(
m∑

k=1

|gk(x̃0, ỹ0)|2
) 1

2

= 1,

and the functions gk(x̃0, ỹ0) are to be determined. The substitution of these
expressions for the perturbations δak into (6) yields

m∑
k=1

gk(x̃0, ỹ0)φk (x̃0, ỹ0) = −‖φ (x̃0, ỹ0)‖ ,

and thus the functions gk(x̃0, ỹ0) must satisfy

gT (x̃0, ỹ0) φ (x̃0, ỹ0) = −‖φ (x̃0, ỹ0)‖ and ‖g(x̃0, ỹ0)‖ = 1.

This establishes the result (10).

It is assumed, for generality, that the approximation (x̃0, ỹ0) in Theorems
1 and 2 is complex, but practical applications require that it be real. In this
circumstance, (2), (9) and (10) are unaltered, but (3) is simplified slightly.
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3 Condition Numbers

Expressions for the componentwise and normwise condition numbers of a reg-
ular point on the curve (1) are derived in Section 3.1. The expression for the
componentwise condition number is proved in [1], but it is reproduced here be-
cause reference will be made to particular lines in the proof. It is shown that
the extension of the proof to a normwise perturbation follows easily by using the
Cauchy-Schwarz inequality. These expressions enable the equations that unite
the condition numbers and backward errors to be established, and these equa-
tions are developed in Section 3.2.

3.1 Componentwise and Normwise Condition Numbers

Expressions for the componentwise and normwise condition numbers of a regular
point on the curve (1) are derived in Theorems 3 and 4 respectively.

Theorem 3. Let (x0, y0) be a regular point P on the curve (1). If each coeffi-
cient ai, i = 1, . . . , m, is perturbed to ai + δai, i = 1, . . . , m, where |δai| ≤ εc |ai| ,
then the componentwise condition number κc (x0, y0) at P is

κc (x0, y0) = max
|δai|≤εc|ai|

|δs|
εc

=
1
‖�f‖

m∑
i=1

|aiφi (x0, y0)| , (12)

where δs is the normal component of the perturbation of the point P .

Proof. Let (x0 + δx0, y0 + δy0) be a point on the perturbed curve, that is, the
curve whose coefficients are ai + δai, i = 1, . . . , m,

m∑
i=1

aiφi (x0, y0) = 0 and
m∑

i=1

(ai + δai) φi (x0 + δx0, y0 + δy0) = 0.

It therefore follows from (1) that

f (x0 + δx0, y0 + δy0) =
m∑

i=1

aiφi (x0 + δx0, y0 + δy0)

=
m∑

i=1

(ai + δai) φi (x0 + δx0, y0 + δy0)

−
m∑

i=1

δaiφi (x0 + δx0, y0 + δy0)

= −
m∑

i=1

δaiφi (x0 + δx0, y0 + δy0) , (13)

and if the perturbation vector (δx0, δy0) is sufficiently small, then

f (x0 + δx0, y0 + δy0) = f (x0, y0) + (δx0fx + δy0fy) + higher order terms
= δx0fx + δy0fy + higher order terms, (14)
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where all derivatives are evaluated at (x0, y0) . The same approximation implies
that the right hand side of (13) can be simplified,

m∑
i=1

δaiφi (x0 + δx0, y0 + δy0) =
m∑

i=1

δaiφi (x0, y0) ,

and thus if terms of second and higher degree are sufficiently small such that
they can be ignored, (13) becomes

[
δx0 δy0

] · [fx fy

]
‖�f‖ = − 1

‖�f‖
m∑

i=1

δaiφi (x0, y0) . (15)

The unit normal vector n to the curve f(x, y) = 0 at (x, y) is

n =
[
nx ny

]
=

[
fx fy

]
‖�f‖ ,

and thus (15) becomes

[
δx0 δy0

] · [nx0 ny0

]
= − 1
‖�f‖

m∑
i=1

δaiφi (x0, y0) . (16)

The term on the left hand side of this equation is the normal component δs of
the perturbation,

δs =
[
δx0 δy0

] · [nx0 ny0

]
, (17)

and thus

|δs| ≤ 1
‖�f‖

m∑
i=1

|δaiφi (x0, y0)| ≤ εc

‖�f‖
m∑

i=1

|aiφi (x0, y0)| .

The result (12) follows.

The next theorem extends this expression to a normwise perturbation in the
coefficients.

Theorem 4. Let (x0, y0) be a regular point P on the curve (1). If each coeffi-
cient ai, i = 1, . . . , m, is perturbed to ai +δai, i = 1, . . . , m, where ‖δa‖ ≤ εn ‖a‖ ,
then the normwise condition number κn (x0, y0) at P is

κn (x0, y0) = max
‖δa‖≤εn‖a‖

|δs|
εn

=
1
‖�f‖ ‖a‖ ‖φ (x0, y0)‖ . (18)
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Proof. The proof is similar to that of Theorem 3, but it differs from (16) onwards.
In particular, it follows from this equation that

|δs| = ∣∣[ δx0 δy0

] · [nx0 ny0

]∣∣
=

1
‖�f‖

∣∣∣∣∣
m∑

i=1

δaiφi (x0, y0)

∣∣∣∣∣
≤ 1
‖�f‖ ‖δa‖ ‖φ (x0, y0)‖

≤ εn

‖�f‖ ‖a‖ ‖φ (x0, y0)‖ ,

and the result (18) follows.

These proofs are easily extended to a singularity of multiplicity two, and the
componentwise and normwise condition numbers at this point are [1], respec-
tively,

κc (x0, y0) = max
|δai|≤εc|ai|

|δs|
εc

=
1√
εc

⎛⎝2
∑m

i=1 |aiφi (x0, y0)|√
f2

xx + 2f2
xy + f2

yy

⎞⎠ 1
2

, (19)

and

κn (x0, y0) = max
‖δa‖≤εn‖a‖

|δs|
εn

=
1√
εn

⎛⎝ 2 ‖a‖ ‖φ (x0, y0)‖√
f2

xx + 2f2
xy + f2

yy

⎞⎠ 1
2

, (20)

where

|δs|2 =
∣∣∣δx2

0nx0x0 +
√

2δx0δy0nx0y0 + δy2
0ny0y0

∣∣∣ , (21)

and

nxx =
fxx√

f2
xx + 2f2

xy + f2
yy

,

nxy =
√

2fxy√
f2

xx + 2f2
xy + f2

yy

,

nyy =
fyy√

f2
xx + 2f2

xy + f2
yy

.

3.2 Backward Errors and Condition Numbers

It is shown in this section that the backward errors and condition numbers at
a point on the curve (1) are related by simple expressions, the exact form of
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which depends on the multiplicity r of the point. Equations (12) and (18) show
that, respectively, only the normal component of the perturbation is defined
in the expressions for the componentwise and normwise condition numbers at a
regular point, and the tangential component of the perturbation is not considered
in these expressions.

The product of the componentwise condition number (12) at a regular point
and componentwise backward error (2) is

1
‖�f‖

m∑
i=1

|aiφi (x0, y0)| |f (x̃0, ỹ0)|∑m
i=1 |aiφi (x̃0, ỹ0)| , (22)

where, to first order,

f (x̃0, ỹ0) = f (x0, y0) + (δx0fx + δy0fy) =
(δx0fx + δy0fy)

‖�f‖ ‖�f‖ = δs ‖�f‖ ,

and δs, the normal component of the forward error, is defined in (17). It therefore
follows that the product (22) simplifies to

|δs|
∑m

i=1 |aiφi (x0, y0)|∑m
i=1 |aiφi (x̃0, ỹ0)| = |δs| ,

to first order, and thus the product of the componentwise condition number
and componentwise backward error at a regular point is equal to the normal
component of the forward error. It is easily verified that the same result applies
to the normwise condition number and normwise backward error, and thus the
equations

|δs| = κc(x0, y0)ηc(x̃0, ỹ0), (23)
|δs| = κn(x0, y0)ηn(x̃0, ỹ0), (24)

are satisfied at a regular point.
The equivalent results for a singularity of arbitrary multiplicity are obtained

by extending (12) and (18), and (19) and (20), to a point of this class, and it is
noted that the backward errors (2) and (9) are independent of the multiplicity
of the point. This generalisation leads to the expressions

|δs| = κc(x0, y0)
(

ηc(x̃0, ỹ0)
εc

) 1
r

εc,

|δs| = κn(x0, y0)
(

ηn(x̃0, ỹ0)
εn

) 1
r

εn,

where δs is equal to the extension of (17) from a singularity of multiplicity one,
and (21) from a singularity of multiplicity two, to a singularity of multiplicity r.
Equations (23) and (24), which are appropriate at a regular point, are obtained
by setting r = 1.
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4 Condition Numbers of a Nearly Singular Point

Examination of the proofs of the componentwise and normwise backward er-
rors, (2) and (9) respectively, shows that the expressions for these errors are
exact because approximations are not used in their derivation. By contrast, the
expressions for the componentwise and normwise condition numbers at a reg-
ular point, (12) and (18) respectively, require that only the lowest order terms
be used, which implies that they are not valid for all perturbations. It follows,
therefore, that although the expressions for the backward errors are valid at
all points on an algebraic curve, there exist restrictions on the class of point for
which the condition numbers (12) and (18) are valid. This phenomenon has been
considered for univariate polynomials [4], where it is shown that this restriction
to the lowest order terms in a Taylor series places bounds on the validity of the
condition numbers of a root that is near another root. This section extends these
results from univariate polynomials to bivariate polynomials.

It follows from (13) and (14) that only first order terms are considered, and
thus the perturbations δx0 and δy0 must satisfy

1
2

∣∣∣∣[ δx0 δy0

] [fxx fxy

fyx fyy

] [
δx0

δy0

]∣∣∣∣% |δx0fx + δy0fy| , (25)

and ∣∣∣∣δx0
∂φi(x, y)

∂x
+ δy0

∂φi(x, y)
∂y

∣∣∣∣% |φi(x0, y0)| , i = 1, . . . , m, (26)

for all perturbations δai, where the derivatives are evaluated at (x0, y0) . By
contrast, a singular point of multiplicity 2 requires that fx = fy = 0, and thus

δx0fx + δy0fy = 0, (27)

for all δx0 and δy0 at this point. Equations (25), (26) and (27) show that the
values of x0, y0, δx0 and δy0 that satisfy

|δx0fx + δy0fy| ≈ 1
2

∣∣∣∣[ δx0 δy0

] [fxx fxy

fyx fyy

] [
δx0

δy0

]∣∣∣∣ , (28)

|φi(x0, y0)| ≈
∣∣∣∣δx0

∂φi(x, y)
∂x

+ δy0
∂φi(x, y)

∂y

∣∣∣∣ , i = 1, . . . , m, (29)

fx, fy = 0, (30)

do not satisfy the conditions that are required for the derivation of condition
numbers at regular and singular points. It follows, therefore, that if x0, y0, δx0

and δy0 satisfy (28), (29) and (30), Theorems 3 and 4 are not valid, and refined
perturbation methods are required. This is illustrated in the following example,
which also shows that a disadvantage of the condition numbers (12) and (18) –
their restriction to the normal component of the perturbation – can be removed
by including the tangential component of the perturbation in the definition of
the condition number.
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Fig. 2. The curve x3 − x2 + y2 = 0

Example 1. Consider the curve shown in Figure 2,

f(x, y) = x3 − x2 + y2 = 0. (31)

The curve has a singularity of multiplicity 2 at the origin, and the non-zero
partial derivatives of f(x, y) are

fx = 3x2 − 2x, fy = 2y, fxx = 6x− 2, fxy = 0, fyy = 2, fxxx = 6.

All points on the curve have coordinates

(x0, y0) =
(
x0,±x0

√
1− x0

)
, x0 ≤ 1,

and the derivation of expressions for the condition numbers at a point on the
curve requires a Taylor expansion of f(x, y), as seen in (14), and thus

f
(
x0 + δx0, x0

√
1− x0 + δy0

)
=
(
x0 (3x0 − 2) δx0 + 2x0

√
1− x0δy0

)
+
(
(3x0 − 1) δx2

0 + δy2
0

)
+ δx3

0,

f
(
x0 + δx0,−x0

√
1− x0 + δy0

)
=
(
x0 (3x0 − 2) δx0 − 2x0

√
1− x0δy0

)
+
(
(3x0 − 1) δx2

0 + δy2
0

)
+ δx3

0. (32)

Three points are considered, and they are distinguished by their distance from
the singularity. These points and their coordinates are:
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Point P1: (x0, y0) =
(
x0, x0

√
1− x0

)
= (1, 0)

Point P2: (x0, y0) =
(
x0, x0

√
1− x0

) ≈ (10−6, 10−6)
Point P3: (x0, y0) =

(
x0, x0

√
1− x0

)
= (0, 0)

The point P1 is regular and remote from the singularity, and this differs from
P2, which is regular but near the singularity. The point P3 is, however, singular
because fx = fy = 0 at this point.

It is assumed that εc = 10−6, and only real perturbations are considered.
Equations (25) and (26) specify the bounds on δx0 and δy0 in order that a first
order Taylor series be appropriate, and (12) enables the area that is defined by
these bounds to be reduced significantly.

Each point is now considered.

Point P1: Equation (25) shows that a first order Taylor series is valid at P1 if∣∣2δx2
0 + δy2

0

∣∣% |δx0| ,
and if it is assumed that a reduction of one order of magnitude is sufficient to
replace the % by ≤, this inequality becomes

2δx2
0 + δy2

0 ≤
1
10
|δx0| . (33)

Also, (26) shows that the restriction to first order analysis requires that the
perturbations satisfy

|δx0| % 1
3

and |δx0| % 1
2
,

or, using the assumption stated above,

|δx0| ≤ 1
30

. (34)

It follows that if the perturbations in the coefficients are sufficiently small such
that only first order terms are adequate, then the point P1 is displaced to a point
that lies in the intersection of the regions that are defined by the inequalities
(33) and (34). It is now shown that the componentwise relative error allows this
region to be reduced considerably.

The partial derivatives of f(x, y) at this point are fx = 1 and fy = 0, and
the unit normal vector at this point is

n0 =
[
nx0 ny0

]
=
[
1 0
]
.

The componentwise condition number at this point is, from (12), κc (x0, y0) = 2,
and thus

max
|δs|
εc

=
1
εc

max
∣∣[ δx0 δy0

] · [1 0
]∣∣ = 2,

or

|δx0| ≤ 2εc. (35)
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Fig. 3. The ellipses E1 and E2, which are defined in (36) and (37), respectively, and

the lines L1 and L2, which are defined in (38)

This inequality defines an infinite strip, parallel to the δy0-axis, within which the
perturbed point must lie, assuming that the perturbations are of first order. The
satisfaction of the inequality (35) necessarily implies that the inequality (34) is
satisfied, from which it follows that (34) need not be considered.

Equations (33) and (35) show that the boundaries of the region within which
the point P1 is displaced are defined by the ellipses E1 and E2,

E1 :
(

δx0 − 1
40

)2

+
δy2

0

2
− 1

1600
= 0, (36)

E2 :
(

δx0 +
1
40

)2

+
δy2

0

2
− 1

1600
= 0, (37)

which have a common tangent at δx0 = δy0 = 0, and the lines L1 and L2,

L1 : δx0 − 2εc = 0; L2 : δx0 + 2εc = 0. (38)

The ellipses E1 and E2, and the lines L1 and L2, are shown in Figure 3, and
it is noted that the lines appear to be coincident because of the scale of the
figure. The intersection region is the area shown in black in Figure 4, which is a
schematic diagram of the region bounded by E1, E2, L1 and L2. The point P1,
which is not marked in this figure, is the origin of the local coordinate system
(δx0, δy0).

The lines and ellipses intersect at the points A,B,C and D, whose coordinates
are, respectively,



Backward Errors and Condition Numbers 427
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Fig. 4. A schematic diagram of the region within which the point P1 is displaced. The

ellipses E1 and E2 intersect tangentially at the point P1, the origin of the coordinate

system (δx0, δy0). This point is not marked

(δxA, δyA) =
(
2εc,

√
εc

5

)
, (δxB, δyB) =

(
2εc,−

√
εc

5

)
,

(δxC , δyC) =
(−2εc,

√
εc

5

)
, (δxD, δyD) =

(−2εc,−
√

εc

5

)
,

where terms of order ε2
c are neglected because εc % 1. It is clear that all points

in the region shown in black in Figure 4 satisfy (34). The condition number
γc(x0, y0) at P1 can be defined as the maximum value of the magnitude of the
perturbation,

γc (x0, y0) =
1
εc

max
i=A,B,C,D

{√
δx2

i + δy2
i

}
=
√

4 +
1

5εc
= 447.2,

and thus the ratio of this condition number to the condition number κc (x0, y0)
is

γc (x0, y0)
κc (x0, y0)

=
447.2

2
= 223.6.

This large ratio implies that κc (x0, y0) is a poor measure of the numerical con-
dition of the curve at P1. This arises because the unit vectors from P1 to the
vertices A,B,C and D, which are the points of maximum displacement, are[±2εc ±

√
εc

5

]√
4ε2

c + εc

5

,
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Fig. 5. The vectors P1A, P1B, P1C and P1D

and thus the angles between these vectors and the unit normal vector to the
curve at this point are

cos θ =

[±2εc ±
√

εc

5

]√
4ε2

c + εc

5

· [1 0
] ≈ ±2

√
5εc.

The vectors P1A, P1B, P1C and P1D are shown in Figure 5, and it is seen that
they are almost orthogonal to the unit normal vector at P1, which is parallel
to the δx0-axis. It follows that the maximum value of the normal component of
the perturbation of P1 is insignificant compared to the maximum value of its
tangential component.

Finally, it is noted that the magnitude of the last term on the right hand
side of (32) is

∣∣δx3
0

∣∣. Its omission from the calculations is justified because its
maximum value is 8ε3

c = 8× 10−18, which is insignificant compared to the term
of first order.

Point P2: The analysis for this point follows closely that for the point P1. Thus
(25) and (26) define the region in which the perturbed point must lie if first order
perturbation analysis is valid, and the expression for κc(x0, y0) enables the area
of this region to be considerably reduced.

It follows from (25) that∣∣(3× 10−6 − 1)δx2
0 + δy2

0

∣∣% ∣∣(3× 10−12 − 2× 10−6)δx0 + 2× 10−6δy0

∣∣ , (39)
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Fig. 6. A schematic diagram of the region of intersection that is defined by the in-

equalities (40), (41) and (42)

which reduces to

|δx0 + δy0| ≤ 2× 10−7, (40)

if δx0 = δy0. Also, it follows from (26) that

|δx0| ≤ 10−7

3
and |δy0| ≤ 10−7

2
, (41)

and the definition of κc(x0, y0) shows that

|−δx0 + δy0| ≤ 10−6εc, (42)

since the unit normal vector to the curve at P2 is

n0 =
[
nx0 ny0

]
=
[
− 1√

2
1√
2

]
. (43)

If δx0 = δy0, P2 is displaced to a point that lies in the intersection of the regions
that are defined by the inequalities (40), (41) and (42). These inequalities define
eight lines,

−δx0 + δy0 = ±10−6εc (Lines L3, L4)
δx0 + δy0 = ±2× 10−7 (Lines L5, L6)
δx0 = ± 10−7

3 (Lines L7, L8)
δy0 = ± 10−7

2 (Lines L9, L10),

which are shown in Figure 6. The coordinates of the points A, B, C and D of
the region shown in black are

(δxA, δyA) =
(
− 10−7

3 ,− 10−7

3 + 10−6εc

)
, (δxB , δyB) =

(
10−7

3 , 10−7

3 + 10−6εc

)
,

(δxC , δyC) =
(
− 10−7

3 ,− 10−7

3 − 10−6εc

)
, (δxD, δyD) =

(
10−7

3 , 10−7

3 − 10−6εc

)
,
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and thus this region is aligned at 45 degrees to the δx0-axis. The major axis of
this region is

r =
[

1√
2

1√
2

]
,

and this is orthogonal to the unit normal vector to the curve, which is given
in (43).

Consider now the situation that occurs when δx0 = δy0. It is readily verified
from (39) that this condition requires that

|δx0| , |δy0| ≤ 10−7,

and all points that satisfy these inequalities lie in the region ABDC in Figure 6.
Since the maximum displacement occurs at the vertices A, B, C and D, the
condition number γc (x0, y0) is

γc (x0, y0) =
1
εc

max
i=A,B,C,D

{√
δx2

i + δy2
i

}
= 4.714× 10−2.

Furthermore, since κc (x0, y0) = 7.071 × 10−7, it follows that the ratio of the
condition numbers γc (x0, y0) and κc (x0, y0) is

γc (x0, y0)
κc (x0, y0)

=
4.714× 10−2

7.071× 10−7
= 6.67× 104,

which is large. The reason is the same as that for the point P1 – the major axis of
the region in which the perturbed point lies is almost orthogonal to the normal
vector to the curve.

Point P3: It is easily verified that the condition numbers (19) and (20) are
equal to zero at this point. It is interesting to note, however, that (12) and (18),
which are the condition numbers at a regular point and not a singular point,
yield the indeterminate form 0/0. L’hôpital’s rule is required for their evaluation,
and this shows that both these condition numbers are also equal to zero, and
not infinity, as would be expected. The value of zero arises because P3 lies on
the curve f(x, y) = 0 and its perturbed form

(1 + δa1)x3 − (1 + δa2)x2 + (1 + δa3)y2 = 0,

for all δai, i = 1, 2, 3.

The point P2 is regular but near the singularity, and the limiting value of the
condition numbers κc(x0, y0) and γc(x0, y0), and their ratio γc(x0, y0)/κc(x0, y0),
as the singularity is approached can be determined by noting that if 0 < ε% 1,
then the point (ε, ε) is in the first quadrant and lies on the curve (31). As the
singularity is approached, the condition number (12) decreases linearly to zero,

lim
ε→0

κc(ε, ε) = lim
ε→0

ε3 + 2ε2√
(3ε2 − 2ε)2 + (2ε)2

=
ε√
2
. (44)
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It follows from (25) that since ε% 1, the inequality∣∣−δx2
0 + δy2

0

∣∣% ε |−2δx0 + 2δy0| ,
must be satisfied. If δx0 = δy0, it reduces to

|δx0 + δy0| ≤ ε

5
, (45)

and if δx0 = δy0, (25) yields

|δx0| , |δy0| ≤ ε

10
. (46)

Equation (26) shows that the perturbations δx0 and δy0 must satisfy

|δx0| ≤ ε

30
and |δy0| ≤ ε

20
, (47)

for first order perturbation analysis to be valid, and it is clear that the satisfac-
tion of these inequalities necessarily implies that (46) is satisfied. Also, it follows
from (44) and the definition of κc (x0, y0) that since ε is small,

|−δx0 + δy0| ≤ εεc, (48)

and thus the region in which the perturbed point lies if first order perturbation
analysis is used is equal to the intersection of the regions that are defined by
the inequalities (45), (47) and (48). This region is identical to that shown in
Figure 6, and the coordinates of the points A, B, C and D are

(δxA, δyA) =
(− ε

30 ,− ε
30 + εεc

)
, (δxB , δyB) =

(
ε
30 , ε

30 + εεc

)
,

(δxC , δyC) =
(− ε

30 ,− ε
30 − εεc

)
, (δxD, δyD) =

(
ε
30 , ε

30 − εεc

)
.

It follows that the condition number of a point sufficiently near the singularity
such that only first order terms are appropriate is

γc (ε, ε) =
1
εc

max
i=A,B,C,D

{√
δx2

i + δy2
i

}
=

(√
2

30
ε

εc

)
,

and thus the ratio of the condition numbers γc (ε, ε) and κc (ε, ε) as ε→ 0 is

lim
ε→0

γc (ε, ε)
κc (ε, ε)

= lim
ε→0

(√
2

30
ε

εc

)(√
2

ε

)
=

1
15εc

= 6.67× 104.

Also, the maximum possible displacement of the point whose coordinates are
(ε, ε) is (to lowest order) (ε/30, ε/30), that is,

(ε, ε)→ (ε± ε/30, ε± ε/30) .

It is clear that this result is in agreement with the condition number at P2.
These calculations were repeated for two other points, and the results are

summarised in Table 1. Several conclusions can be drawn from this table and
the preceding analysis:
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Table 1. A summary of the numerical results for five points on the curve (31)

maxi=A,B,C,D
Coordinates (x0, y0) κc (x0, y0) γc (x0, y0)

γc(x0,y0)
κc(x0,y0)

√
δx2

i + δy2
i

(1, 0) 2.00 447.2 224 4.47 × 10−4

(0.64, 0.384) 1.064 298.4 280 2.98 × 10−4

(0.64 × 10−3, 0.64 × 10−3) 4.528 × 10−4 30.12 6.65 × 104 3.01 × 10−5

(10−6, 10−6) 7.071 × 10−7 4.714 × 10−2 6.67 × 104 4.71 × 10−8

(0, 0) 0 0 6.67 × 104 0

1. κc(x0, y0) is smaller than γc(x0, y0), possibly by several orders of magnitude,
because κc(x0, y0) considers only the maximum value of the normal compo-
nent of the perturbation, but γc(x0, y0) considers the maximum value of the
perturbation in all directions.

2. The value of

max
i=A,B,C,D

{√
δx2

i + δy2
i

}
,

decreases as the distance to the singularity decreases, and thus the restriction
to the lowest order terms in a Taylor series places a tight bound on the
maximum allowable perturbation.

3. The ratio γc (x0, y0) /κc (x0, y0) increases to a maximum value of 6.67× 104,
which is attained as the singularity is approached.

4. κc(x0, y0) is independent εc, but γc(x0, y0) is a function of εc.

5 Summary and Discussion

Expressions for the componentwise and normwise backward errors at a point on
an algebraic curve, and the formulae that relate them to the condition numbers,
have been established. It has been shown that the expressions for the backward
errors are valid at all points on a curve, but that there are restrictions on the
validity of the condition numbers at points near a singularity.

An example was used to motivate an improved expression γc(x0, y0) for the
numerical condition of a point on an algebraic curve, and it was shown that it
may differ significantly from the established condition number κc(x0, y0). This
difference arises because κc(x0, y0) quantifies the maximum value of the normal
component of the perturbation, but γc(x0, y0) is a measure of the maximum value
of the perturbation in all directions. The revised condition number γc(x0, y0) is,
however, computationally more involved than κc(x0, y0).

The analysis in this paper has been relatively simple, and some of the re-
strictions that are imposed by traditional methods have been discussed and
illustrated by an example. There are, however, more issues that must be ad-
dressed for a complete discussion of the numerical condition of a regular point
that is near a singular point:

– It was assumed in the paper that the inequality a % b can be replaced by
a ≤ b/k where k = 10. This choice of k was arbitrary, and other values of k,
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for example, k = 20, 50, 100, must be investigated in order to determine the
dependence of γc(x0, y0) on this constant.

– It was assumed that εc = 10−6, but other values must be considered because
γc(x0, y0) is a function of this constant. It is expected that this dependence
increases as the singularity is approached.

– A relatively simple curve was used to demonstrate some of the concepts that
were discussed. A more detailed study requires that a curve of arbitrary
degree be considered, and this should include the determination of the region
in which a perturbed point lies.
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Abstract. We present a method for approximate rational parameteriza-
tion of algebraic surfaces of arbitrary degree and genus (or more general
implicitly defined surfaces), based on numerical optimization techniques.
The method computes patches of maximal size on these surfaces subject
to certain quality constraints. It can be used to generate local low de-
gree approximations and rational approximations of non-parameterisable
surfaces.

1 Introduction

In geometric modelling and computer aided design, various different represen-
tations for curves and surfaces exist, such as implicitly defined curves and sur-
faces, parametric representations by (piecewise) rational functions, procedurally
defined surfaces, or triangular meshes. The duality of implicit and parametric
representations makes each of them especially well suited for certain applications,
cf. [3].

Parametric descriptions are suitable for fast generation of point meshes, fast
visualization and interactive modeling. On the other hand, the use of implicitly
defined surfaces provides simple criteria to decide whether points are located on,
inside or outside a surface. These surfaces support simple techniques to define
blend surfaces between objects, and they can easily be intersected with lines.
Moreover the class of algebraic surfaces is closed under geometric operations
such as intersection and offsetting (although this is a more theoretical advantage,
since the resulting degrees are rather high).

Most computational applications yield optimal performance for one particular
representation. Regardless, there exist some areas where it is crucial that both
descriptions are available. An example is surface-surface intersection. Ideally,
one of the surfaces should be given in implicit form, and the other in parametric
form. In the case of the detection of self–intersections, both representations of
the same surface should be available.

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 434–447, 2005.
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This paper is devoted to the problem of converting an algebraic surface (or,
more generally, an implicitly defined surface) to a (rational) parametric repre-
sentation, which we shortly refer to as parameterization.

Several exact methods based on algebraic techniques are known. Most of them
are constrained to special curves and surfaces (e.g., of low degree) [1, 2, 5, 12, 18].
Algorithms for solving the general parameterization problem are available [17].

Clearly, the algebraic techniques can be used only if an exact rational param-
eterization exists. In the surface case, both the arithmetic genus and the second
plurigenus have to be equal to 0.

Alternatively, one may use approximate methods, which should be able to
generate patches on any input surface. Also, we expect them to be computation-
ally less expensive than exact methods.

In [4], a combination of algebraic and numerical techniques is used to con-
struct G1 spline approximations of algebraic surfaces. The algorithm starts with
the computation of the singular points and curves. Later, Padé approximation
and Taylor expansion are used to generate an approximation. The resulting
surface maintains differential properties of the input surface and preserves the
singularities.

The numerical parameterization method investigated in [8] uses the so called
normal-form of a curve/surface. The output is a procedurally defined parameter-
ization, i.e., an algorithm that maps a parameter (pair) to a point on the curve
or surface C. First a parametric patch relatively close to C is generated and then
a parameter (pair) can be mapped to the according footpoint on C. Note that C
needs to be free of singularities in the area of interest.

In the remainder of this paper we present a numerical method for generating
an approximate rational parameterization of an algebraic surface. We combine
nonlinear minimization techniques with a region growing approach, in order to
obtain good initial solutions for the nonlinear minimization.

The paper is organized as follows. Section 2 describes the objective function.
Its main ingredient is a distance functional, measuring the deviation of the ra-
tional surface patch from the given algebraic surface. Section 3 discusses the
actual minimization procedure and the region growing process. Starting with a
small initial patch we alternate minimization and extrapolation steps to obtain
an approximation of maximal size subject to certain quality criteria. Various
examples are described in section 4. Finally we conclude this paper.

2 Rational Parameterization as Nonlinear Optimization

A parameterization of a given surface is generated by computing a (possibly
local) minimizer of an objective function of the form

S = I + ωJJ + ωLL + ωRR + ωEE (1)

among all rational surface patches of a given degree. The next section describes
the space of rational patches, while the different contributions to the objective
function will be explained in subsections 2.2–2.5.
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2.1 Preliminaries

Consider an algebraic surface F of degree d. It consists of all points satisfying
F (x, y, z) = 0, where F is a polynomial of total degree d in x, y and z with
coefficients gijk,

F (x, y, z) =
d∑

i=0

d−i∑
j=0

d−i−j∑
k=0

xiyjzkgijk. (2)

For reasons of numerical stability, F should be represented in Bernstein–
Bézier form. The techniques described below can be applied to any implicitly
defined surface, provided that the function F is C2.

We generate a rational surface patch P which approximates F . It is repre-
sented as

P : p(u, v) =
(

x(u, v)
w(u, v)

,
y(u, v)
w(u, v)

,
z(u, v)
w(u, v)

)T

(u, v) ∈ [0, 1]× [0, 1] .

The three numerators x(u, v), y(u, v), z(u, v) and the common denominator
w(u, v) are tensor–product polynomials of degree (m,n) in the parameters (u, v).
Using the Bernstein polynomials Bl

k(.), and homogeneous coordinates, we may
represent it as a tensor-product Bézier patch p∗ in 4 (cf. [10]),

P∗ : p∗(u, v) = (x(u, v), y(u, v), z(u, v),w(u, v))T

=
m,n∑
i,j=0

Bm
i (u)Bn

j (v)cij (u, v) ∈ [0, 1]× [0, 1] .

The control points cij consist of four coordinates cx
ij , cy

ij , cz
ij and cw

ij . Note
that a parameterization p(u, v) in 3 corresponds to a one dimensional space of
parameterizations p∗(u, v) in 4, since multiplying all control points cij with a
constant factor changes p∗(u, v), but the related parameterization p(u, v) remains
invariant.

2.2 Distance Measure

The main objective is to approximate F by a patch P. Hence, we need to measure
the approximation quality, which is given by the distance of the two surfaces.
As a measure for the approximation quality, we consider the integral

I =
∫ 1

0

∫ 1

0

F 2(p(u, v))
‖∇F (p(u, v))‖2 du dv, (3)

whose integrand is the so-called squared “Sampson distance” [16]. I is a positive
rational functional in the control points cij . A local minimum represents a local
best approximation of F by a patch P.

Unfortunately, simple minimization of I is a task that is not well posed. The
patch P is neither constrained in size nor position. Consequently, we obtain a
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local minimum for any patch P degenerating to a single point located on F .
This means (3) yields an infinite number of local minima. In order to obtain a
unique solution, additional constraints have to be introduced.

2.3 Constraining the Weights

As described in the previous section, multiplying all control points cij with a
constant factor leaves p(u, v) invariant. Hence, we have to introduce a normal-
ization in the linear space of the m× n homogeneous control points.

In addition, a point p(ũ, ṽ) with vanishing denominator (weight) w(ũ, ṽ) = 0
corresponds to a point at infinity, or to a base point (if the three numerators
vanish, too). Since we are only interested in regular patches p(u, v) without
points at infinity, we have to satisfy the side–condition w(u, v) = 0.

Both requirements can be taken into account by introducing the auxiliary
term

J =
∫ 1

0

∫ 1

0

(w(u, v)− 1)K du dv,

where K is an even number K, in the objective function. (We chose K = 8.)
J is a non-negative functional that measures the deviation of the weight

coordinates cw
ij from 1. Let ωJ be a small positive weight factor. By adding

ωJJ to the objective function, we obtain a patch P close to F , with its weight
coordinates cw

ij being close to 1. This approach controls the weight coordinates
of the control points. By choosing the weight ω ‘sufficiently small’, points at
infinity (poles) can be avoided (see Section 3.3 for more information).

2.4 Controlling the Inner Geometry

Despite the additional term J , the minimization problem still does not have
a unique solution. For instance, shrinking a patch P will usually decrease the
values of I and J . Consequently, we have to constrain the size and shape of P.
For this purpose we use additional terms which are related to the inner geometry
of the surface patch, in the sense of differential geometry [13].

Let g11, g12 and g22 denote the first metric fundamental forms,

g11 = 〈pu, pu〉, g12 = 〈pu, pv〉, g22 = 〈pv, pv〉,

where pu = (∂/∂u) p(u, v) and pv = (∂/∂v) p(u, v) are the partial derivative
vectors and 〈·, ·〉 denotes the inner product. For any pair of positive constants
(l1, l2), the integral

L =
∫ 1

0

∫ 1

0

(g11 − l1)2 + (g22 − l2)2 du dv

measures the deviation of the length of the first derivatives pu and pv from
√

l1
and
√

l2.
We choose another small positive weight ωL and add the term ωLL to the

objective function. This leads to a more uniformly parameterized surface patch:
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in the limit ωL → ∞, the parameter lines are traced with the constant speed√
l1 and

√
l2.

The term L does not take the angle between the parameter lines into account.
This can be achieved by introducing the term

R =
∫ 1

0

∫ 1

0

g2
12 du dv .

It penalizes the deviation of the angle between the parameter lines of p(u, v) from
a right angle. By adding ωRR to the objective function (where ωR is another
non–negative constant), one obtains a patch that approximates the given implicit
surface and has almost orthogonal parameter lines. More precisely, in the limit
ωL,ωR →∞, the surface patch becomes an isometric embedding of a rectangle
of size

√
l1 ×
√

l2.

Remark 1. Another functional, which has a similar effect to L and R, can be
obtained by considering the length of all tangent vectors at a point. If a linear
parameterization q maps the parameter domain [0, 1]2 into a rectangle with
lengths

√
l1 ×
√

l2, then the directional derivative vectors

|| d
dt

q(u0 + t
√

l2 cos(φ), v0 + t
√

l1 cos(φ))
∣∣∣∣
t=0

|| (4)

at all points (u0, v0) are unit vectors. Hence, for a general surface p, one might
consider the functional∫ 2π

0

(|| d
dt

p(u0 + t
√

l2 cos(φ), v0 + t
√

l1 cos(φ))||2 − 1)2dφ

= (2 + +3
4g2

11l
2
2 − 2g11l2

3
4g2

22l
2
1 − 2g22l1 + 1

2g11g22l1l2 + g2
12l1l2)π.

(5)

As a potential advantage, this approach gives functionals which provide cer-
tain invariance properties with respect to transformations of the parameter do-
main. However, this may not be so important, since the space of functions which
we are using (tensor–product polynomials) does not have such invariance proper-
ties anyway. In contrast with this, the space of all polynomials of certain degree
would be invariant.

2.5 Controlling the Position

While the size and the inner geometry of the patch has now been constrained, its
position on the given surface F is still variable, i.e., the patch can still “float” on
the surface. We resolve this by pulling the points p(ui, vi) of one or more parame-
ter pairs (ui, vi) towards user– (or automatically) chosen positions Pi(px

i , py
i , pz

i ).
The sum of the squared Euclidean distances of the points p(ui, vi) and points Pi

is given by

E =
∑

i

‖ 1
w(ui, vi)

⎛⎝x(ui, vi)
y(ui, vi)
z(ui, vi)

⎞⎠−
⎛⎝px

i

py
i

pz
i

⎞⎠ ‖22 (6)
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By adding ωEE to the objective function, where ωE is another non–negative
constant, the points p(ui, vi) will be tied to the points Pi on the surface. As a
consequence, the position of the resulting patch is approximately determined. In
the examples in section 4 we prescribe the position of the four corner points of
the parametric patch.

Note that specifying more than one triple (ui, vi, Pi) also affects the inner
geometry of the resulting patch. In this case one has to pay attention concerning
the term L, i.e., the values l1 and l2 need to be chosen suitable to prevent possible
conflicts in the constraints.

3 Finding a Solution

The objective function (1) is obtained as the weighted sum of the terms described
in the last section. It is a positive rational functional in the control points cij of
P. As a necessary criteria for a local minimum of S, the first partial derivatives
have to vanish. This leads to a system of M =4(n+1)(m+1)nonlinear equations

∂S

∂α
= 0 where α ∈ {cx

ij , c
y
ij , c

z
ij , c

w
ij , }i=0,...,m

j=0,...,n
. (7)

We solve it using Newton’s algorithm ([7]), which guarantees fast convergence,
provided that a good initial solution is available.

Alternatively, this can be seen as sequential quadratic programming, applied
to the problem S → min. In each step, the objective function is replaced with a
local quadratic approximation.

3.1 Computational Details

For each step of Newton’s algorithm we need to solve a system of linear equations
of size M ×M . The elements of the according matrices are the second partial
derivatives of S,

∂2S

∂α∂β
where α, β ∈ {cx

ij , c
y
ij , c

z
ij , c

w
ij , }i=0,...,m

j=0,...,n
. (8)

In order to generate this system, we need to compute 1
2M(M + 1) integrals for

each of the terms I, J , L, R, and E. For instance, related to I, we have to
evaluate the integrals ∫ 1

0

∫ 1

0

∂2

∂α∂β

F 2(p(u, v))
‖∇F (p(u, v))‖2 du dv ,

Though possible, the exact evaluation of the integrals is quite expensive. A simple
alternative is to use Gaussian quadrature ([7]). As the integrands related to I and
E are rational expressions, Gaussian quadrature will yield only approximations
of these integrals. The integrals related to J , L, and R will be evaluated exactly,
provided that the order of the numerical quadrature is sufficiently high.
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Remark 2. In order to facilitate the evaluation of integrals, one may also use
polynomial alternatives to the rational integrands in I and E. According to our
numerical experience, however, the rational functionals give better results.

3.2 Choice of the Initial Solution, Extrapolation and Iteration

Convergence. The convergence of any Newton–type method depends strongly
on the choice of a suitable initial solution. If the initial solution is sufficiently
close to the minimum, then the algorithm converges quadratically.

In our situation, we may construct a good initial solution by a geometric
approach. If we start with a sufficiently small planar patch which is part of the
tangent plane to F at a point, then the iteration process can be expected to
converge.

Patch Growing. Clearly, starting with a small planar patch we will obtain
only a small resulting patch. Hence, we consider an iterative process to generate
larger patches.

We start with a small patch, which has been obtained after several iterations
of the Newton method. This patch is extrapolated in order to obtain a larger
patch, which is then used as starting patch for a new cycle of Newton’s algorithm.
The extrapolation is restricted by the distance error, by the weights and by the
inner geometry of the obtained bigger patch. This can be expressed by certain
thresholds for the resulting value of the objective function.

The feasible values of the extrapolation parameters can be found by a simple
bisection procedure.

Note that after each extrapolation step we need to reassign the values l1,
l2 and the points Pi. The new locations of the Pi (typically representing the
expected vertices) can be found by projecting the vertices of the extrapolated
patch back onto the surface.

Termination Criteria. As termination criteria for both Newton and extrap-
olation steps we use the properties of the current patch, which are expressed
by the values of the various contributions to the objective function. The overall
process is controlled by user defined global limits and thresholds for single steps.

3.3 Adaptation of the Objective Function

Automatic Choice of Points and Lengths. The quantities l1, l2 and the
points Pi specify the position of the patch and the expected parametric speed√

l1 and
√

l2 of the parameter lines. These values have to comply with the cur-
rent patch in the iteration process, in order to avoid chaotic behaviour. In our
implementation we choose

√
l1 and

√
l2 to be equal to the lengths of the current

patch. The points Pi are chosen as the footpoints of the points p(ui, vi) on F ,
where p is the current patch.

Automatic Adaptation of the Weights. The sum S and the resulting patch
are affected crucially by the choice of the weights ωJ , ωL, ωR and ωE . Of course,
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Table 1. Examples: degrees, computing time, # steps

Surface d m,n Time Extrapolation Newton
(sec.) steps steps

Sphere 2 2,2 1.1 14 46
Minimal Surface 12 3,3 32 10 50
Self-intersecting 8 3,3 10 18 57
Whitney Umbrella 3 3,3 14.91 18 113

Table 2. Values of the weights

ωJ ωL ωR ωE

start 100 1 1 10−2

lower threshold 10−1 10−5 10−5 10−4

optimal values are not known a priori. Our implementation bypasses this prob-
lem by using an automatic adjustment of the weights according to the current
contributions to the objective function. During the first steps of the algorithm,
higher weights may be necessary in order to stabilize the algorithm, while they
may later spoil the approximation quality.

Our main objective is to minimize the distance part I. The other terms are
considered as secondary objectives. Let us assume that during the algorithm one
of the values ωJJ , ωLL, ωRR or ωEE is getting larger than I. This means that
we spend most of the effort on minimizing that term instead of I. By lowering
the corresponding weight the focus is shifted again to the Sampson distance.

Our implementation uses initial values for the weights ωJ , ωL, ωR and ωE

and additional lower thresholds. A weight ωT is reduced if ωT T gets larger than
I, and ωT is larger than the threshold. This approach guarantees a minimal
influence of each term.

4 Examples

In order to demonstrate the capabilities and possible applications of the algorithm,
we have chosen four examples ranging from very simple to quite challenging.

A summary of the computation time and the performed extrapolation and
Newton steps is given in Table 1. Note that these examples all have been com-
puted with the same parameters. The starting values and lower bounds for the
weights are shown in Table 2. The upper bound for the total error S was 10−6.
In all figures, the size of the bounding cube is 1. In all cases, the algorithm was
stable and we obtained satisfying results.

4.1 The Sphere

Our first example is the approximation of a sphere by a rational biquadratic
patch. Figure 1 shows the planar starting patch (left), the approximation after
the first round of Newton steps (center), and the final approximation (right). Our
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Fig. 1. Biquadratic patch approximating a sphere
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Fig. 2. Contributions to the objective function during the iteration steps

method generates an approximating patch whose parameter lines are nearly iso-
parametric and approximately orthogonal. The distribution of the parameter
lines is visualized by the checkerboard pattern on the surface.

These properties can be enforced by increasing the (lower bounds of the)
corresponding weights. On the other hand, the resulting patch will then stay
smaller. Figure 2 displays the graphs of the total error S, the approximation error
I, and the position error E during the 46 Newton steps. The 14 extrapolation
steps correspond to the small peaks. They are also marked by small plus signs
on top of the three graphs.

Finally, Figure 3 shows the squared Sampson distance of the final patch
with respect to the implicitly given sphere as graph of the domain [0, 1]2. Due
to the terms controlling the inner geometry, which tend to flatten the surface,
the maximal error is present at the four vertices of the patch. Note that the
approximation is highly accurate, since the squared Sampson distance (which is
a good approximation of the squared distance) is in the order of 10−5, while the
radius of the sphere equals 1.
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Fig. 3. The Sampson Distance of the final patch

Fig. 4. Parameterization of an algebraic approximation of a minimal surface

4.2 An Approximate Minimal Surface

The second example, which is shown in Figure 4, is the approximation of a
minimal surface taken from the Costa-Hoffman-Meeks surface family (see [6, 9]).
Note that the upper part of the surface has been cut away, in order to get a
better insight into the structure of the surface.

An exact rational parameterization cannot be found for this surface, since its
topological genus is 1. Using our numerical method we can still generate finite
patches approximating the surface with a high accuracy. Similar to the sphere
case, the figure shows the initial solution and the final result.
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4.3 Surfaces with Singularities

The remaining two examples (Figures 5 and 6) demonstrate that the method is
able to handle self-intersections. We start with a small patch on one side of the
self-intersection curve and finally get an approximation that ‘dives through’ the
singularity and continues on the correct branch of the surface.

Once again, the figures shows the initial solution and the final result.

Fig. 5. Self-intersecting surface of degree 8

Fig. 6. Whitney Umbrella
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5 Concluding Remarks

We presented a method for the approximation of an implicitly defined surface
by a rational patch. The main ingredient is the minimization of the Sampson
distance of the two surfaces, while additional side constraints are used to deter-
mine the inner geometry and the position of the parametric patch. The objective
functional is minimized using of Newton’s algorithm and Gaussian quadrature.
In order to maintain a good initial solution, we alternate extrapolation steps and
approximation steps, producing surface patches of optimal size, according to the
specified criteria.

As a matter of future research, we plan to consider the problem of covering
the whole implicitly defined surface. This can be achieved either by collecting
several patches, which have been obtained starting from several seed points, or
by parameterizing the surface not with a single patch, but with a spline surface.
In order to use the latter approach, the extrapolation step should be modified
so as to permit adding new segments to the spline surface.

The possible applications of the parameterization technique include the con-
struction of rational surface patches from unorganized point data. As a first step,
one may fit an algebraic spline surface to these data, e.g., using techniques as in
[11]. In a second step, the implicitly defined surface can then be parameterized,
using the technique described in this paper.

While other methods either have to address the parameterization problem
[10] or depend on an initial solution [15], the combination of implicit fitting and
approximate parameterization may help to circumvent both problems. Moreover,
it allows for fully exploiting the weights of the rational surface representation.
This can be highly useful for generating exact descriptions of many important
classes of surfaces, such as natural quadrics. In addition, the use of the additional
term controlling the inner geometry may – in combination with the error term –
help to generate a segmentation of the surface.

Preliminary results are shown in Figure 7. We start from a point cloud with
11, 366 points, which represents a cylinder with a cylindrical hole. The point
cloud is the input data for the approximate implicitization algorithm described
in [19]. The result, shown in figure 7 (middle), is a piecewise algebraic surface,

Fig. 7. Surface Reconstruction: Point cloud (left), piecewise implicit approximation

(middle), parametric approximation (right)
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which consists of 214 subpatches of tri-degree 3. One peculiar disadvantage of
this implicit approximation is that it introduces additional branches.

We use the implicit approximation as input for the approximate rational
parameterization algorithm described in this paper. Figure 7 (right) shows the
results for three different starting patches on different sides of the object. As
a byproduct of the procedure, we may identify the cylinder, the hole and the
planar top. (Clearly, similar results can be obtained using existing techniques
for automatic segmentation, which are often based on the analysis of the surface
normals [14].) Note that the algorithm stops from growing the patches near
regions of high curvature. This is due to the terms controlling the inner geometry.
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Abstract. In this paper, we study the convergence property of several
discrete schemes of the surface normal. We show that the arithmetic
mean, area-weighted averaging, and angle-weighted averaging schemes
have quadratic convergence rate for a special triangulation scenario of
the surfaces. By constructing a counterexample, we also show that it
is impossible to find a discrete scheme of normals that has quadratic
convergence rate over any triangulated surface and hence give a negative
answer for the open question raised by D.S.Meek and D.J. Walton. More-
over, we point out that one cannot build a discrete scheme for Gaussian
curvature, mean curvature and Laplace-Beltrami operator that converges
over any triangulated surface.

1 Introduction

Estimation of normal vectors and curvatures on discrete surfaces are often re-
quired in Computer Aided Geometric Design and Computer Graphics. In the
past decades, many discretized approaches for normal vectors, Gaussian cur-
vature, mean curvature and Laplace-Beltrami operator have been proposed and
used. The convergence of the discretized approaches has also been studied. In [5],
the authors analyzed the convergence of the normal vector and Gaussian cur-
vature. For normal vectors, they obtained the following result: for non-uniform
data, the unit vector parallel to the arithmetic mean of unit normals of the tri-
angular faces around a point approximates the unit normal of the surface at that
point to accuracy O(h). Furthermore, by the numerical test, they found that the
accuracy of the arithmetic mean, area-weighted averaging, and angle-weighted
averaging are not higher than O(h). As pointed out in [5], normal estimation
methods with accuracy O(h2) are very useful for the spherical image method
of Gaussian curvature approximation. Hence, they raised an open question:find
a linear combination of the normals of the triangular faces, based on geomet-
ric considerations, that approximates the normal of the surface to O(h2). In
this paper, we prove that under certain conditions, the approximation accuracy

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 448–457, 2005.
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of normal vectors can be O(h2), meaning the approximation converges with a
quadratic rate. Moreover, we show that it is impossible to find a discretization
scheme of normals that has quadratic convergence rate over any triangulated
surface. Hence, the answer to the above mentioned open question is negative.

In [6], Meyer et al. proposed some discrete schemes to approximate sev-
eral important geometric attributes, including normal vectors and curvatures
on arbitrary triangular meshes. In [9], G. Xu proved that a well known dis-
cretized scheme of Gaussian curvature, derived from Gauss-Bonnet theorem,
has quadratic convergence rate under certain conditions. In [10] and [11], he also
studied the convergence of Laplace-Beltrami operators and mean curvature, in-
clude Taubin et al’s discretization [7], Mayer et al’s discretization [4], Desbrun et
al’s discretization[1], Meyer et al ’s discretization[6], and proposed several simple
discretization schemes of Laplace-Beltrami operator over triangulated surfaces.
In [5], the author proposes an asymptotic analysis of Gaussian curvature for three
methods: quadratic fit method, angular defect and spherical image method. A
review of these schemes is given in [3]. However, none of these discretizations
of Gaussian curvature and mean curvature has been proved to be convergent
over any non-degenerate triangulated surface. Therefore, a natural questions is
raised: can one build a discrete scheme of Gaussian curvature and mean cur-
vature which involves one-ring vertices and converges over any non-degenerate
triangle surface? In this paper, we shall give a negative answer to this question.
Hence, we have to accept the fact that the discretization scheme for curvature
only convergent over special triangular surface.

The rest of the paper is organized as follows. In Section 2, we introduce some
definitions and formulations. In Section 3, we discuss the convergence property of
discrete schemes of normals. In Section 4, by giving a counterexample, we show
that one cannot construct a scheme of Gaussian curvature and mean curvature
that converges over any non-degenerate triangle surface. Moreover, we also give
a negative answer to the open question raised in [5].

2 Preliminaries

Let S(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ R3 be a regular parametric surface.
We further assume that the point where the normal and curvature need to be
approximated is O : (x(0, 0), y(0, 0), z(0, 0))T . Then from differential geometry,
the normal vector of S(u, u) at O is Su(0,0)× Sv(0,0).

Let Pi = S(qi) be n distinct points on S(x, y) near the point (x(0, 0), y(0, 0),
z(0, 0))T and qi = (ri cos(θi)h, ri sin(θi)h). The indices arithmetic modulo n
so index n + 1 is the same as index 1. Without loss of generality, we assume
0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn < 2π. Denote the normal to the triangle PiOPi+1 as
ni,i+1, by using Taylor expansion,

ni,i+1 = (Pi −O)× (Pi+1 −O) (1)

=

⎛⎝ (yuzv − yvzu) sin(θi+1 − θi)riri+1h
2 + Aih

3 + O(h4)
−((xuzv − xvzu) sin(θi+1 − θi)riri+1h

2 + Bih
3 + O(h4))

(xuyv − xvyu) sin(θi+1 − θi)riri+1h
2 + Cih

3 + O(h4)

⎞⎠ ,
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where

Ai = (yuu cos2 θi + 2yuv cos θi sin θi + yvv sin2 θi)(zu cos θi+1 + zv sin θi+1)r
2
i ri+1

− (zuu cos2 θi + 2zuv cos θi sin θi + zvv sin2 θi)(yu cos θi+1 + yv sin θi+1)rir
2
i+1,

Bi = (xuu cos2 θi + 2xuv cos θi sin θi + xvv sin2 θi)(zu cos θi+1 + zv sin θi+1)r
2
i ri+1

− (zuu cos2 θi + 2zuv cos θi sin θi + zvv sin2 θi)(xu cos θi+1 + xv sin θi+1)rir
2
i+1,

Ci = (xuu cos2 θi + 2xuv cos θi sin θi + xvv sin2 θi)(yu cos θi+1 + yv sin θi+1)r
2
i ri+1

− (xuu cos2 θi + 2xuv cos θi sin θi + xvv sin2 θi)(yu cos θi+1 + yv sin θi+1)rir
2
i+1.

Denote the unit normal vector on triangle surfaces PiOPi+1 as ni,i+1 :=
ni,i+1/‖ni,i+1‖. By using the formulation above, we have

ni,i+1 = n0(1 − Ai(yuzv − yvzu)h − Bi(xuzv − xvzu)h + Ci(xuyv − xvyu)h

sin(θi+1 − θi)riri+1
+ O(h2)).

(2)

where n0 is the unit normal vector at O, i.e.

n0 =
(yuzv − yvzu,−(xuzv − xvzu), xuyv − xvyu)T√

(yuzv − yvzu)2 + (xuzv − xvzu)2 + (xuyv − xvyu)2
.

In general, the unit normal vector at O is approximated by

n∑
i=1

λini,i+1, (3)

where λi is weight and
∑n

i=1 λi = 1. By (2), we find the covergence rate of the
discrete scheme is O(h), which agrees with the result in [5].

There are several ways to determine the weights. A simple way is to take
arithmetic mean, i.e., λi = 1

n . Other ways include take an area-weighted average
and an angle-weighted average.

Using discretization normals, the spherical image method for Gaussian curva-
ture approximation is built in [5], and moreover, the following lemma is proved.

Lemma 1. (see [5]) When unit normals are known to accuracy O(h2), the spher-
ical image method approximates the Gaussian curvature to accuracy O(h).

Hence, O(h2) accuracy normals are very useful for computing the Gaussian
curvature.

3 Convergence of Normal Vectors

In [5], the authors showed that the accuracy of the arithmetic mean, area-
weighted averaging, and angle-weighted averaging are not higher than O(h).
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However, we shall prove that under certain conditions, the approximation
accuracy of the three ways can be O(h2).

We firstly exhibit the numerical behaviors of the discrete schemes of the sur-
face normal. To show the numerical behavior of the discrete schemes , we take
several two variable functions over xy-plane as three dimensional surfaces so that
the exact normal can be computed. Both the exact and approximated normals
are computed at some selected domain points qij = (xi, yj) = (i/20, j/20), i =
1, · · · , 19, j = 1, · · · , 19. The surfaces are triangulated around qij by triangulat-
ing the domain first, with mapping the planner triangulation onto the surfaces
by the selected bivariate functions. As a simple case, the domain around qij is
triangulated locally by choosing n regularly distributed points:

qk = qij + h(cos(θk), sin(θk)), θk = 2(k − 1)π/n, k = 1, · · · , n.

The convergence rate are checked by taking h = 1/8, 1/16, 1/32, · · · and n =
3, 4, · · · , 9.

The functions we use are the following

F1(x, y) =
√

4− (x− 0.5)2 − (y − 0.5)2,
F2(x, y) = exp(−5((x− 0.5)2 + (y − 0.5)2)),
F3(x, y) = tan(5y − 5x),

F4(x, y) =
1 + cos(5y)

6 + 6(3x− 1)2
.

Denote e1(Fj , n), e2(Fj , n) and e3(Fj , n) as the maximal error of the approxi-
mated surface normals computed by the arithmetic mean scheme,angle-weighted
averaging and area-weighted averaging over the above mentioned local triangula-
tions and the exact normal vector computed from the continuous surfaces defined
by Fj . Tables 1–3 show the asymptotic maximal error e1(Fj , n), e2(Fj , n) and
e3(Fj , n).

From the above numerical resuls, we find the arithmetic mean scheme and
area-weighted averaging can converge in the rate O(h2) for the n > 3 regularly
distributed domain vertices. When the valence n is 3, in general, the approximate
surface normal converges in the rate O(h). Moreover, if n is even, the angle-
weighted averaging can converge in the rate O(h2).

Table 1. The maximal errors of the arithmetic mean scheme

n e1(F1, n) e1(F2, n) e1(F3, n) e1(F4, n)

3 1.7291e − 02 × h 8.2968e − 01 × h 1.7331e + 00 × h2 7.16229e − 01 × h

4 7.2445e − 02 × h2 5.4452e − 01 × h2 1.1554e + 00 × h2 6.3986e − 01 × h2

5 6.0409e − 02 × h2 5.9247e − 01 × h2 1.73312e + 00 × h2 8.6673e − 01 × h2

6 5.6638e − 02 × h2 6.6982e − 01 × h2 1.73310e + 00 × h2 9.0644e − 01 × h2

7 5.4428e − 02 × h2 7.2413e − 01 × h2 1.73310e + 00 × h2 9.8637e − 01 × h2

8 5.3324e − 02 × h2 7.6641e − 01 × h2 1.73310e + 00 × h2 1.0233e − 00 × h2

9 5.2663e − 02 × h2 7.9757e − 01 × h2 1.73310e + 00 × h2 1.0458e − 00 × h2
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Table 2. The maximal errors of the angle-weighted averaging

n e2(F1, n) e2(F2, n) e2(F3, n) e2(F4, n)

3 3.0024e − 02 × h 7.7029e − 01 × h 2.1349e + 00 × h2 7.1111e − 01 × h

4 6.81814e − 02 × h2 6.2178e − 01 × h2 1.1560e + 00 × h2 6.1403e − 01 × h2

5 5.33700e − 02 × h2 2.8789e − 02 × h 1.4518e + 00 × h2 1.9115e − 02 × h

6 4.9291e − 02 × h2 6.5325e − 01 × h2 1.8996e + 00 × h2 8.7364e − 01 × h2

7 4.6771e − 02 × h2 1.3400e − 03 × h 1.0810e + 00 × h2 1.2636e − 03 × h

8 4.5462e − 02 × h2 7.2842e − 01 × h2 1.2577e + 00 × h2 9.2338e − 00 × h2

9 4.4681e − 02 × h2 1.5197e − 03 × h 8.8635e − 01 × h2 3.6756e − 03 × h

Table 3. The maximal errors of area-weighted averaging

n e3(F1, n) e3(F2, n) e3(F3, n) e3(F4, n)

3 1.7281e − 02 × h 8.2961e − 01 × h 1.7331e + 00 × h2 7.1663e − 01 × h

4 8.4120e − 02 × h2 4.3854e − 01 × h2 1.1554e + 00 × h2 6.1402e − 01 × h2

5 7.3895e − 02 × h2 8.0248e − 01 × h2 1.7331e + 00 × h2 7.5509e − 01 × h2

6 6.8800e − 02 × h2 8.5412e − 01 × h2 1.7331e + 00 × h2 8.1070e − 01 × h2

7 6.7316e − 02 × h2 8.9488e − 01 × h2 1.7331e + 00 × h2 8.4060e − 01 × h2

8 6.6484e − 02 × h2 9.2511e − 01 × h2 1.7331e + 00 × h2 8.6749e − 01 × h2

9 6.4620e − 02 × h2 9.4713e − 01 × h2 1.7331e + 00 × h2 8.8737e − 01 × h2

In the following, we shall give a sufficient condition for the convergence in
rate O(h2).

Theorem 1. Let p0 be a vertex of M with valence n, and pi, i = 1, · · · , n be its
neighbor vertices. Suppose p0 and pi, i = 1, · · · , n are on a sufficiently smooth
regular parametric surface S(x, y) ∈ R3 and there exist q0, qi ∈ R2 such that
p0 = S(q0), pi = S(qi). Then in the following two cases

(1). n = 2m,m > 1, qi+m = q0 − (qi − q0),
∑m

i=1 λi = 1, λi+m = λi,
(2). n = 2m+1,m>1,∠qiq0qi+1 = 2π

2m+1 , ‖qi−q0‖=‖qi+1−q0‖,
∑m

i=1 λi= 1,
λi+1 = λi,∑n

i=1 λini,i+1 approximates the unit normal of the surface at the point p0 to
the accuracy O(h2).

Proof. Without loss of generality, we may assume q0 =(0, 0) and qi =(ri cos(θi)h,
ri sin(θi)h). Since S(x, y) is a regular surface, we can use the notations and
formulas proposed in Section 2.

It follows from (2) that,

ni,i+1 = n0(1 − Ai(yuzv − yvzu)h − Bi(xuzv − xvzu)h + Ci(xuyv − xvyu)h

sin(θi+1 − θi)riri+1
+ O(h2)).

Consider
∑n

i=1 λini,i+1. By the explicit formulation of ni,i+1, to prove the
theorem,we merely need to prove

n∑
i=1

λi
Ai

(sin θi+1 − θi)riri+1
= 0,

n∑
i=1

λi
Bi

(sin θi+1 − θi)riri+1
= 0,
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n∑
i=1

λi
Ci

(sin θi+1 − θi)riri+1
= 0.

Firstly, we consider the case where n = 2m. Since qi+m = q0 − (qi − q0), we
have θi+m = π + θi, ri+m = ri. Hence,

n∑
i=1

λi
ri+1 cos2 θi+1 sin θi

sin(θi+1 − θi)

=

m∑
i=1

λi
ri+1 cos2 θi+1 sin θi

sin(θi+1 − θi)
+

n∑
i=m+1

λi−m
ri+1−m cos2(π + θi+1−m) sin(π + θi−m)

sin(θi+1−m − θi−m)

=
m∑

i=1

λi
ri+1 cos2 θi+1 sin θi

sin(θi+1 − θi)
+

m∑
i=1

λi
−ri+1 cos2 θi+1 sin θi

sin(θi+1 − θi)

≡ 0.

Using similar method,
∑n

i=1 λi
Ai

(sin θi+1−θi)riri+1
≡ 0.

Secondly, we consider the case where n = 2m + 1. In this case, λi, ri and
θi+1− θi are all constant. Hence, to prove

∑n
i=1 λi

Ai

(sin θi+1−θi)riri+1
≡ 0, we only

need prove
∑n

i=1 cos2 θi sin θi+1 = 0,
∑n

i=1 cos2 θi cos θi+1 = 0,
∑n

i=1 cos θi sin θi

sin θi+1 = 0,
∑n

i=1 cos θi sin θi cos θi+1 = 0,
∑n

i=1 cos θi+1 sin2 θi = 0, and∑n
i=1 sin θi+1 sin2 θi = 0. We only prove one equation, with the proof of other

equations being similar. Consider

n∑
i=1

cos2 θi sin θi+1 =
2m∑
i=0

cos2
i− 1

2m + 1
2π sin

i

2m + 1
2π

= 2
2m∑
i=1

sin
i

2m + 1
2π cos

2(i− 1)
2m + 1

2π −
2m∑
i=1

sin
i

2m + 1
2π.

Using the equality
∑2m

k=1 sin(a0 + kd) = cos(d/2+a0)−cos(a0+2md+d/2)
2 sin d/2 , we have

2
2m∑
i=1

sin
i

2m + 1
2π cos

2(i− 11)
2m + 1

2π −
2m∑
i=1

sin
i

2m + 1
2π

=
2m∑
i=1

(sin
3i− 2
2m + 1

2π + sin
−i + 2
2m + 1

2π)−
2m∑
i=1

sin
i

2m + 1
2π

= 0.

Using the similar derivation above, we can prove
∑n

i=1 λi
Bi

(sin θi+1−θi)riri+1
= 0

and
∑n

i=1 λi
Ci

(sin θi+1−θi)riri+1
= 0.

Hence, under the condition (1) or (2),
∑n

i=1 λini,i+1 has quadratic conver-
gence rate. The theorem is proved.
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Corollary 1. Under the conditions of Theorem 1, if the weight λi is defined as
the arithmetic mean or the area-weighted averaging

∑n
i=1 λini,i+1 approximates

the unit normal of the surface at the point p0 to accuracy O(h2).

Proof. When λi is selected as arithmetic mean, λi = 1
n . Obviously, in this case

λi = λj ,∀i, j. By Theorem 1, the Corollary holds, when λi is defined as the
arithmetic mean. Denote the area of 
pip0pi+1 as A(pip0pi+1). Then, we have
A(pip0pi+1) = 1

2‖ni,i+1‖. Under the condition of Theorem 1, it is easy to see
that the coefficient of h in

∑n
i=1 A(pip0pi+1) and

∑n
i=1 ni,i+1 is cancelled. The

Corollary holds.

Corollary 2. Under the condition (1) of Theorem 1, if the weight λi is defined
as the angle-weighted averaging

∑n
i=1 λini,i+1 approximates the unit normal of

the surface at the point p0 to accuracy O(h2).

Proof. Let θi,i+1 be the planar angle pip0pi+1 and let it be positive by convention.
Then we can derive, θi,i+1 = θi+1 − θi + a(i)h + O(h2). Under the condition (1)
of Theorem 1, a(i+m) = −a(i). Hence, it is easy to see that the coefficient of h
in λini,i+1 is cancelled. The Corollary is proved.

Remark 1. The convergence results are established under particular conditions.
As pointed out in [11], these special cases are very useful and important. A
number of numerical simulations of geometric partial differential equations are
conducted over a triangulated domain formed by a uniform three-directional or
four-directional partition. Both partitions satisfy the condition in Theorem 1.

Remark 2. An interesting observation is that the condition of the discretiza-
tion scheme of normals having quadratic convergence is exactly the same as the
condition of a discretization of gradient having quadratic convergence proposed
in [11]. (Theorem 4.1 in [11] presents only the condition (1). In fact, by using
similar method with [11], under the condition (2), the discretization of gradient
has also quadratic convergence. )

4 Counterexamples to Convergence of Curvature and
Normals

In the previous section, we have studied the convergence of the discrete unit
normal. The convergence property of the discrete Gaussian curvature and mean
curvature has been considered in [9],[10],[11] and [5]. But none of discretization
schemes has been proved to be convergent over any non-degenerate triangle
surfaces. A natural questions is raised: can one build a discretization scheme
of Gaussian curvature and mean curvature converging over any non-degenerate
triangle surfaces? In this section, by a counterexample we shall give a negative
answer for the question.

Let p0 be a vertex of M where the Gaussian curvature is are to be approx-
imated and pi, i = 1, · · · , n be its neighbor vertices. We make a hypothesis
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that the discretization scheme of Gaussian curvature involving one-ring neigh-
bor vertices of p0, denoted as H(M, p0; p1, · · · , pn), is convergent for any triangle
mesh surface M. Suppose M is a given triangle surface approximating the sur-
face S(x, y) = (x, y, f(x, y))T , f(x, y) = B02x

2 + B11xy + B02y
2 and the origin

p0 = (0, 0, 0) is a vertex of M. Assume the valence of the origin point is 4
and the neighbor points are pi = S(qi), i = 1, · · · , 4, where q1 = h(1, 2),q2 =
h(−1,−2),q3 = h(−1, 2) and q4 = h(1,−2)(see fig.1.a). Since Gaussian curva-
ture of S(x, y, z) at p0 equals to 4B02B20 −B2

11, by the convergence property of
H(M, p0; p1, · · · , pn), we have limh→0 H(M, p0; p1, p2, p3, p4) = 4B02B20 −B2

11.

Suppose M̂ is another given mesh surface approximating the surface Ŝ(x, y) =
(x, y, f̂(x, y))T , f̂(x, y) = (4B02 + B20)x2 + B11xy, and the origin O : (0, 0, 0)
is a vertex of M̂ where the curvature needs to be approximated. The neigh-
bor points of the origin are p̂i = Ŝ(qi), i = 1, · · · , 4, where q1 = h(1, 2),q2 =
h(−1,−2),q3 = h(−1, 2) and q4 = h(1,−2). The Gaussian curvature of Ŝ at
O is −B2

11. By the convergence property of H, we have limh→0 H(M̂, p0; p̂1, p̂2,
p̂3, p̂4) = −B2

11. Obviously, by the formulation of f(x, y) and f̂(x, y), for any h,
pi = p̂i, i = 1, · · · , 4. Since the discretization scheme H merely involves one-ring
neighbor vertices of p0, by pi = p̂i, H(M̂, p0; p̂1, p̂2, p̂3, p̂4)=H(M, p0; p1, p2, p3, p4)
for any h. Hence, limh→0 H(M̂, p0; p̂1, p̂2, p̂3, p̂4) = limh→0 H(M, p0; p1, p2, p3, p4).
But −B2

11 is not always equal to 4B02B20 −B2
11. Therefore, a contradiction ap-

pears. So, the hypothesis with H(M, p0; p1, · · · , pn) being convergent for any
mesh surface does not hold.

Since the mean curvature of S(x, y) and Ŝ(x, y) at the origin equals to B02 +
B20 and 4B02 + B20 respectively, we can show that one can not construct a
discretization scheme of mean curvature converging over any mesh surface by
using the similar method with the above,

From above, if merely using one-ring vertices, we can not build discretiza-
tion schemes of Gaussian curvature and mean curvature converging over any
mesh surface. For fixed integer k, using k−ring vertices, can we construct a

Fig. 1. A counterexample to convergence of curvature and normal
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discretization scheme of Gaussian and mean curvature converging over any mesh
surface?

Suppose the j-th ring vertices around p0 is pj,i = S(qj,i), where j ≤ k,qj,i =
jqi, i = 1, · · · , 4 (Fig.1.b shows the case where k = 2). Obviously, for any h,

S(qj,i) = Ŝ(qj,i), j ≤ k, i = 1, · · · , 4. Hence, by using similar method with the
above, we can show that for fixed integer k, if only use k-ring vertices, we can
not build discretization schemes of mean curvature converging over any mesh
surface. It is well known that Laplace-Beltrami operators relates closely to the
mean curvature normal. Let p be a surface point on two-dimensional manifold
M. Then ‖ΔMp‖ = 2H(p), where ΔMp is the Laplace-Beltrami operator and
H(p) is the mean curvature at p. Hence, by above results, for fixed integer k, if
only k-ring vertices are used, we can not build discretization schemes of Laplace-
Beltrami operators converging over any mesh surface.

In [5], a open question is raised: Find a linear combination of the normals
of the triangular faces, based on geometric considerations, that approximates
the normal of the surface to O(h2). We shall give a negative answer for the
open question. Suppose that the vertexes S(q1i), i = 1, · · · , 4 (see Fig.1.b) are
the vertexes of M where the unit normals are to be approximated. We make a
hypothesis that there exits a linear combination of the normal of the triangular
faces that approximates the normal at S(q1i) to O(h2). By Lemma 1, under the
hypothesis, we can build a discretization schemes involving 2-ring vertexes which
approximates the Gaussian curvature at O to accuracy O(h). The conclusion
contradicts to the above results. Hence, the hypothesis does not hold i.e. for
any mesh surface, one can not find a linear combination of the normals of the
triangular faces that approximates the normal of the surface to O(h2).

Remark 3. In this counterexample, the valence of p0 and p11 is 4 and 6 re-
spectively. In fact, by using similar method, we can show one can not build a
discretization schemes of Gauss and mean curvature which convergent at p11.
Hence, even if the valence of vertexes in mesh surface is bigger than 4, we also
can not build convergent discretization schemes of Gauss and mean curvature
for any mesh surface.

Remark 4. The points pi or pji in this counterexample are under-determined
for quadratic fit. As pointed out in [5] and [11], if the quadratic fit method has a
unique solution, one can approximate the Gaussian curvature and mean curva-
ture to accuracy O(h) and the unit normal to accuracy O(h2). Then, when the
quadratic fit method has a unique solution, can one find a convergence discretiza-
tion scheme of Gaussian and mean curvature depending only on edge length, an-
gles, and areas of triangle faces? We conjecture that the answer to the question
is negative. If the conjecture holds, quadratic fit methods can be the most general
method for finding convergent discretization schemes for geometry operators.
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Abstract. This paper presents a marching method for computing inter-
section curves between two solids represented by subdivision surfaces of
Catmull-Clark or Loop type. It can be used in trimming and boolean op-
erations for subdivision surfaces. The main idea is to apply a marching
method with geometric interpretation to trace the intersection curves.
We first determine all intersecting regions, then find pairs of initial in-
tersection points, and trace the intersection curves from the initial inter-
section points. Various examples are given to demonstrate the robustness
and efficiency of our algorithm.

1 Introduction

Subdivision surfaces are defined as the limit of repeated refinement of 3D control
meshes using specific subdivision rules [4, 5, 9, 12]. Due to their advantages, such
as being able to handle arbitrary topology and ease of coding, they are widely
used in computer animation and game engines [16], for example. However, appli-
cations of subdivision surfaces to industrial design are still infrequent, one reason
being that is difficult to construct complex subdivision models using the usual
solid operations. This problem is mainly due to the lack of suitable geometric
algorithms for computing intersection curves, offsets, blending, trimming, and
Boolean operations.

Some such algorithms do already exist. Litke et al. [11] introduced a new
method for trimming subdivision surfaces, which is based on the combined sub-
division schemes to guarantee exact interpolation of trim curves. Biermann et
al. [3] presented a method for computing approximate results of Boolean opera-
tions (union, intersection, difference) for free-form solids bounded by multiresolu-
tion subdivision surfaces. Both works cite the problem of computing intersection
curves calculation as an open problem. Nasri [13] presented a general framework
for intersecting two recursive subdivision surfaces based on divide and conquer
methods to process complete surfaces. Instead, our goal is to apply a marching
method with geometric interpretation to trace the intersection curves based on

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 458–471, 2005.
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Fig. 1. Intersection curves

an inital intersection point. Grinspun et al. [6] developed an algorithm for de-
tecting interference of subdivision surfaces. He used normal bounds to determine
whether a surface interferes with itself or other surfaces. In this paper, we focus
on computing all intersection curves between two subdivision surfaces.

Computing intersection curves for parametric and implicit surfaces has been
extensively investigated [1, 2, 7, 10]. However, for subdivision surfaces, there are
two main difficulties: analytical representation and parameterization. A break-
through was made by Stam [15, 16], who described an approach for evaluating
subdivision surfaces at arbitrary parameter values in the cases of both Catmull-
Clark [4] and Loop [12] schemes. Building on the results of his work, we show
how traditional algorithms for parametric surfaces can now be applied to sub-
division surfaces. The main contribution of this paper is to extend the moving

affine frame (MAF) marching method [8] to subdivision surfaces. In addition,
we present a complete method to trace all intersection curves. Our approach has
many applications, to trimming and Boolean operations, for example.

An example using our approach is shown in Figure 1 of the intersection be-
tween a Loop sphere and a Catmull-Clark torus. On the left, the two intersection
curves are shown together with the given initial control meshes. The result plus
both limit surfaces is shown in the centre middle, and the right hand figure gives
pre-images of both curves.

The rest of the paper is organized as follows. Section 2 gives a brief review
of parameterization of subdivision surfaces. In Section 3, we review the MAF
marching method for tracing intersection curves for parametric surfaces, and
extend it to subdivision surfaces. Section 4 presents an algorithm for calculating
all intersection curves of subdivision surfaces. Section 5 shows various results
and conclusions are given in Section 6.

2 Local Parameterization of Subdivision Surfaces

A subdivision surface is defined by an initial control mesh and a set of subdivi-
sion rules. As the control mesh is successively refined according to the rules, a
sequence of meshes with an increasing numbers of faces is obtained. In the limit,
a smooth surface is obtained (Figure 2). Intuitively, the initial control mesh can
be considered the domain of the limit surface; each initial face of the control
mesh is mapped to a patch on the limit surface. We call these faces the domain

faces and denote the map as: (i, u, v) → (x, y, z) where i indexes the domain
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Fig. 2. Mapping a domain face to its corresponding patch. The extraordinary vertex

(blue) has parameter (0,0) in all three surrounding extraordinary domain faces

faces, u, v ∈ (0, 1) are parameter values on the i-th domain face, and (x, y, z)
are 3D coordinates of the corresponding limit point on the surface. As in Stams
work, we make two assumptions
– The initial control mesh has already been subdivided once so that each

domain face of the control mesh contains at most one extraordinary vertex.
For a quadrilateral (or triangular) mesh, a vertex having a valence not equal
to four (or six, respectively) is called an extraordinary vertex. A domain
face with an extraordinary vertex is called an extraordinary domain face.
For example, the blue extraordinary vertex in Figure 2 belongs to three
extraordinary domain faces.

– The parameterization is organized so that each extraordinary vertex has
parameters (0, 0) in all the extraordinary domain faces containing it.

3 Tracing a Branch of an Intersection Curve

3.1 MAF Marching Method for Parametric Surfaces

We first introduce the moving affine frame marching method [8] for parametric
surfaces. Assume we are given two parametric surfaces r1 and r2, and an initial
intersection point M. Let (ui, vi), i = 1, 2 be the parameter values of M on
each of the two surfaces. The goal is to step along the intersection curve and
find the next intersection point. The MAF method gives a stepping size for
finding the next intersection point. Let the desired stepping distance be δ. The
stepping direction is along the tangent vector to the intersection curve, which
is given by T = N1 × N2, where Ni is the normal vector of ri at M, i.e.
Ni = ∂ri/∂ui × ∂ri/∂vi, i = 1, 2. Thus, the target point is H = M + δT. Since
H lies on the tangent planes of both surfaces, which are defined by the affine
frames {M; ∂ri/∂ui∂ri/∂vi}, i = 1, 2, the vector H − M can be written as:

H − M = δT = (∂ri/∂ui)Δui + (∂ri/∂vi)Δvi, i = 1, 2 (1)

Thus, the parameter increments, Δui,Δvi, can be calculated as using the fol-
lowing triple products:

Δui = [H − M, ∂ri/∂vi,Ni]/[∂ri/∂ui, ∂ri/∂vi,Ni]
Δvi = [H − M, ∂ri/∂ui,Ni]/[∂ri/∂vi, ∂ri/∂ui,Ni] (2)
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With these increments, two new points can be computed as Pi = ri(ui+Δui, vi+
Δvi), i = 1, 2. This procedure of computing Pi from a target point H is called a
sphere transformation.

If P1 and P2 are sufficiently close, i.e. ||P1P2|| < ε, the MAF algorithm
outputs (P1+P2)/2 as the next intersection point. Otherwise, it performs a mid-

point transformation on Pi as follows. Let πi be the tangent plane of ri at Pi.
If πi, i = 1, 2 are not parallel, they must intersect in a line l. We project each Pi

to the line l to get new points Ri, and compute the mid-point S = (R1 +R2)/2.
By applying a sphere transformation to S, we obtain two new points Pi and

repeat the above process of testing ||P1P2|| < ε and, if again failing the test,
performing the mid-point transformation, until ||P1P2|| < ε.

By repeatedly finding the next intersection point from a given intersection
point, we can trace an entire intersection curve. But when should we stop tracing?
If the initial surfaces are closed, their intersection curves are also closed. Hence,
we use the distance between the current intersection point and the starting point
to decide when to stop tracing. If the distance is decreasing and is less than a
threshold, such as 2δ, we replace the stepping size δ by a smaller one. If the
distance continues to decrease and fall below a smaller threshold, we shorten
the stepping size once again and terminate tracing if the distance is less than a
prescribed tolerance ε. If the initial curves are open, tracing terminates either on
forming an intersection loop as above, or when reaching the boundary of either
surface. In the latter case we again are using a decreasing step size near the
boundary.

3.2 Extending the MAF Method to Subdivision Surfaces

The MAF method is an efficient iterative method with the benefit of a clear
geometric interpretation; furthermore it is easy to implement, and it only requires
evaluation of points and first-order derivatives. In order to extend the MAF
method to subdivision surfaces, we need to resolve two issues:

– How to evaluate the surface and its first-order derivatives efficiently.
– How to find parameter values when updates move outside a domain face,

given that we have a local piecewise parameterisation.

The first problem has already been solved by Stam, who has presented an efficient
method to evaluate Catmull-Clark and Loop surfaces and all their derivatives at
arbitrary parameter values [15, 16]. Hence, we just consider the second problem.

We deal with the quadrilateral mesh case first; we will then look at the
triangular mesh case. Assume that the current parameter is (i, u, v). The sphere
transformation step computes parameter increments, Δu,Δv, according to a
target point H. The new parameter values are then computed as u = u + Δu,
v = v + Δv. If u /∈ [0, 1] or v /∈ [0, 1], the parameter will move out of the current
domain face into an adjacent domain face. Hence, we must replace the computed
parameter (i, u, v) by some (j, u′

, v
′), where j is the index of the target domain

face and (u′
, v

′) are the new parameter values in that domain face.
If the current domain face is not extraordinary, the target domain face must

be one of the eight domain faces around it as depicted in Figure 3a. It is trivial
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Fig. 3. Identifying parameter values when moving out of the current domain face

(quadrilateral case): (a) regular domain face; (b) extraordinary domain face

to find the target domain face from u and v, and to calculate the new parameter
values (u′

, v
′) according to the u and v directions in that domain face.

If the current domain face is extraordinary, we know that it has only one
extraordinary vertex, denoted P. By assumption, P has parameter (0, 0) in all
extraordinary domain faces containing it. Since the other three vertices of the
current domain face are all regular, if u > 0 or v > 0, we can always find a
target domain face according to the u and v directions as we do above for the
regular case. If u < 0 and v < 0, the target domain face must be one of the other
extraordinary domain faces containing P (red faces in Figure 3b). We need to
determine to which in which candidate domain face the parameter values lie, and
compute the new parameter values (u′

, v
′) in that face. Since u, v < 0 and P has

parameter (0, 0) in all domain faces containing it, we can calculate the distance
between (u, v) and P in parametric space, d =

√
u2 + v2. We estimate the new

parameter values by u
′ = v

′ =
√

d2/2 and evaluate the corresponding points at
(u′

, v
′) for all the candidate domain faces. Finally, we select that point nearest

to the target point H and let its parameter values and domain face determine
the new parameter values (j, u′

, v
′).

Next, we consider the case of triangular mesh. Assume that the current
parameter is (i, v, w), and that for symmetry we add an auxiliary parameter
u = 1 − v − w. In the sphere transformation step, we obtain the parame-
ter increments as before, Δv,Δw, and compute the new parameter values as
v = v + Δv,w = w + Δw. If v /∈ [0, 1] or w /∈ [0, 1] or u /∈ [0, 1], the parametric
point lies in an adjacent domain face, and we must find new parameters (j, v′, w′)
as before. The target domain face is one of the domain faces in the 1-ring sur-
rounding the current domain face, i.e. those which share at least one vertex with
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Fig. 4. Identifying parameter values when moving out of the current domain face (tri-

angular case): (a) regular domain face; (b) extraordinary domain face

the current domain face (see Figure 4a). Thus, if u < −1 (i.e. v + w > 2), we
recalculate the values (v, w) using v = 2v/(v +w), w = 2w/(v +w), and if u > 2
(i.e. v + w > −1), we calculate v = v/|v + w|, w = w/|v + w|, so that in each
case −1 ≤ u ≤ 2. Let P be the parametric point (0, 0) in the current domain
face. Regardless of whether P is regular or extraordinary, the other two vertices
of the current domain face, Q and R, are both regular. Hence, if −1 ≤ u ≤ 1,
we can easily find the target domain face from u, v and w (see Figure 4a) and
calculate the new parameter (j, v′, w′) using the v and w directions in that do-
main face. For example, if −1 < u < 0 and 0 < v,w < 1, the target domain
face is the triangle QSR. If 1 < u < 2, we must consider whether P is a regular
or extraordinary vertex. If P is a regular vertex, we can still find the target
domain face easily and calculate the new parameter values. If P is extraordinary
(see Figure 4b), since v, w < 0 and P has parameter (0, 0) in all domain faces
containing it, we can calculate the distance between (v, w) and P in parametric
space, d =

√
min(1, v2 + w2). Next, we compute v

′ = w
′ =

√
d2/2 and evalu-

ate the surface points corresponding to (v′
, w

′) for all candidate domain faces.
Finally, we select the point nearest to the target point H and use it to give the
new parameter values (j, v′, w′).

4 Surface-Surface Intersection Algorithm

As mentioned in Section 2, each patch in the limit surface corresponds to a
domain face in the initial mesh. If X denotes the set of all patches for a given
subdivision surface, its union gives the limit surface. When a domain face is
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Fig. 5. Subdividing a domain face locally (top row), and splitting its sub-patches ac-

cordingly (middle row). The bottom row shows the domains of the sub-patches

subdivided into four sub-faces (using Catmull-Clark or Loop subdivision), the
corresponding patch is also split into four sub-patches (see Figure 5). Henceforth,
we refer to the elements of X as sub-patches (Figure 5, middle row), each having
a corresponding sub-face as its domain face (Figure 5, top row), and having a
parametric domain that is a subset of its parents parametric domain (Figure 5,
bottom row). Additionally, when a face is subdivided locally, in order to be able
to continue subdividing its four sub-faces, all the neighbouring faces that share
at least a common vertex with those sub-faces (the green faces in the top middle
and right of Figure 5) should be computed too.

4.1 Algorithm Overview

We now consider the overall algorithm. It finds starting points for tracing, and
then march along the intersection from those starting points.

There are three main steps to this process; in the below, by interfering, we
mean potentially but not necessarily intersecting:
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– Split interfering sub-patches until they are approximately flat, and record
all interfering sub-patch pairs.

– Find all pairs of intersecting sub-patches from the interfering pairs, and find
an intersection point for each pair.

– Trace all intersection curves from these initial intersection points.

4.2 Convex Hull and Flatness Condition

From the subdivision rules, it can be shown that both Catmull-Clark and Loop
surfaces possess the convex hull property, which means that each sub-patch is
within the convex hull of its control vertices. A sub-patch has 2N + 8 control
vertices for a quadrilateral mesh and N + 6 control vertices in the case of a
triangular mesh, where N is the valence of a regular vertex or, if present, of
the only extraordinary vertex in the domain face. For simplicity, we use an
axis-aligned bounding box (AABB) of the convex hull of each sub-patch as its
bounding volume. This is used to detect interference between two sub-patches. If
two bounding volumes intersect, we split both sub-patches by subdividing their
domain faces, until all sub-patches are considered flat. To measure the flatness
of a sub-patch S, we use the variable f = 1−min(N0 ·Ni), where N0 is the unit
normal of Ss domain face and Ni is the unit normal of each of the neighbouring
1-ring faces of Ss domain face. (We estimate the normal of a quadrilateral face
as the cross product of the two vectors connecting opposite vertices.) When the
flatness f is less than a threshold Tf , the sub-patch is considered to be flat.

Fig. 6. Flat sub-patches during intersection between a cube and a cone
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Additionally, if Ss domain face is quadrilateral, we must first ensure that the
domain face is approximately planar by checking if Na ·Nb < Tf , where Na and
Nb are the normals of the two triangles comprisong domain face. If the domain
face is not planar, we consider the sub-patch not to be flat.

When a sub-patch is sufficiently flat, we take the average parameter values for
its parametric domain and evaluate the limit point Pa at the average parameter.
Instead of the original bounding volume, we then use the AABB of the convex
hull formed by Pa and all the corner points of the sub-patch. We also evaluate
the limit normal vector Na at Pa, to be used as the normal of that sub-patch
while finding an actual intersection point, as described in Section 4.3.

By detecting interference and splitting sub-patches, all interfering flat sub-
patches are found, as illustrated in Figure 6. This example shows intersection
between a cube and a cone. In this case, all interfering sub-patches are flat within
tolerance after three levels of subdivision (see Figure 6 from left to right). The
top row shows the domain faces of all flat sub-patches, and the bottom row
shows the domain faces of all interfering sub-patches.

During this step, for each sub-patch on one surface, we record all the inter-
fering sub-patches from the other surface. Thus, we obtain all pairs of interfering
sub-patches. Most of these pairs of interfering sub-patches, however, do not truly
intersect. In the next section, we identify those pairs that truly intersect and find
an initial intersection point for each pair.

4.3 Intersection Between Two Sub-patches

If the flatness threshold Tf is sufficiently small, we can approximate all sub-
patches by polygons and find all intersecting polygon pairs. However, using a
small Tf is undesirable, as it leads to more levels of subdivision, incurring con-
siderable cost. Hence, we prefer a patch-patch intersection method.

Inspired by the MAF method, given two sub-patches, we use the average pa-
rameters of their respective domains as their initial parameters and iterate the
mid-point transformation and sphere transformation to search for an intersec-
tion point in their respective domains. If we find an intersection point within
a prescribed number of iterations, n, we say that the sub-patch pair intersect.
Their intersection point and the sub-patch pair are then added to a set of can-
didate intersecting pairs. If no intersection point is found after n iterations, it is
still possible that the two sub-patches intersect. Such tricky cases are illustrated
in Figure 7 for the simpler problem of curve-curve intersection in the plane:
if we perform mid-point transformation on the two initial points (blue), both
cases will search for the intersection point in the wrong direction and miss the
intersection point in the domain of each curve.

To avoid such cases, it would suffice to ensure that for any point of the first
curve, it is impossible to find a point in the second curve with parallel normal
vector. But for surfaces, the above condition cannot eliminate such cases. Since
our purpose is to approximately find initial intersection points for tracing, we
simply try to avoid these cases by taking a hint from the following observation: in
practice, such cases usually appear when the normal vectors of two sub-patches
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Fig. 7. Two cases which miss the intersection point when doing midpoint transforma-

tion

Fig. 8. Interference detection between two sub-patches

are almost parallel. Thus, before checking whether two sub-patches intersect, we
estimate if their normals, Nm1 ,Nm2 (computed as in Section 4.2), are almost
parallel as follows. Let m = 1 − |Nm1 · Nm2 |. If m < f1 + f2, where f1, f2 are
the flatnesses of the two sub-patches, we say that Nm1 and Nm2 are approxi-
mately parallel. If so, we use a tighter bounding volume to more strictly decide
interference as follows. Consider two sub-patches A and B. If they are flat, their
corner points and two further points PmA

, PmB
would have been calculated as

described in Section 4.2. We project all the corner points to the line l connecting
PmA

and PmB
, and obtain two maximal intervals on l (shown in red in Figure 8).
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If the intervals do not overlap, then A and B do not intersect. Otherwise we split
the sub-patch whose domain face has a lower subdivision level and recursively
check if the resulting new pairs of sub-patches intersect. If both domain faces
has reached the maximum subdivision level, since they are very close to each
other and their normal vectors are almost parallel, we conclude that the two
subdivision surfaces sharing a region. Perturbation schemes [14] may be used to
resolve such degeneracies. For reasons of space, we do not consider this problem
further here, and instead focus on presenting the efficient marching method.

We now have all the intersecting sub-patch pairs and an initial intersection
point for each. Next, we trace all intersection curves.

4.4 Tracing

We now have all intersecting sub-patch pairs in the candidate set. For each
pair, both sub-patches are flat and their normals are not parallel. Hence, we can
reasonably assume that each intersecting sub-patch pair has only one intersection
curve. Based on this assumption, we present the following tracing algorithm.

First, we randomly select an intersecting sub-patch pair from the candidate
set and invoke the MAF procedure with the intersection point of the pair. When
the algorithm marches to a new intersection point, it obtains a parameter for
each of the two surfaces. For each parameter, we then find the sub-patch whose
domain contains that parameter. This new sub-patch pair should also appear in
the candidate set. Since there is only one intersection curve for each sub-patch
pair, we mark that new sub-patch pair with the index of the current intersection
curve and remove it from the candidate set. After tracing a curve, all the sub-
patch pairs it has encountered by will have been marked, and thus will not be
selected for initiating further curve tracing. If the step size is too large, the
tracing curve may skip some pairs. However, tracing from these skipped pairs
would result in a situation where most sub-patch pairs on the current curve
already belong to another curve; the two curves obviously are identical and thus
tracing is terminated. Starting points are selected from the candidate set and
each time a corresponding intersection curve is traced. This is repeated until the
candidate set is empty.

While we calculate all intersection curves between the two subdivision sur-
faces, we also record the parameter values of all the intersection points to obtain
the pre-images of the intersection curves.

4.5 Parameter Settings

First, we consider the step size δ. We would like |δu| and |δv| both to be lass
than 1 in the sphere transformation step. To achieve this, we estimate the step
size according to the scale of the two meshes and adaptively adjust it according
to the domain face containing the current tracing point.

In the first step of our algorithm, a sub-patch is considered to be sufficiently
flat when its flatness is less than a threshold: f < Tf . We find a choice of Tf = 0.1
works well in practice. Usually, all sub-patches are found to be flat after two or
three levels of subdivision, and for sub-patches with large curvature, six levels are
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sufficient. Hence, we conservatively set the maximum subdivision level to be 10.
In the second step, if two sub-patches really intersect, in practice we always find
an intersection point within three iterations; again to be safe, we set the number
of iterations n = 5. Since most intersecting pairs do not actually intersect, the
average number of iterations used is close to 5.

4.6 Remarks

Since our method is an extension of a known marching method for parametric
surfaces to subdivision surfaces, we can handle all special cases that it can also
cope with for parametric surfaces. For the same reason, our method faces the
same kinds of degeneracy problems as do traditional surface-surface intersection
methods.

5 Results

We show some results of calculating intersection curves between subdivision
solids using our algorithm. All the examples in Figure 9 were calculated within
10 seconds on a PC with 900 MHZ CPU. More complex examples are shown in
Figure 10.

Fig. 9. Intersection curves between two subdivision solids

6 Conclusions

In this paper we have presented an efficient method to calculate intersection
curves between two subdivision solids. We continued earlier work and have made
a contribution that will extend subdivision surfaces to new applications. Our
ultimate intention is to construct complex models from simple primitives using
solid modelling operations, and so future works will include:
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Fig. 10. (a) Intersecting a Venus (Loop surface) and a torus (Catmull-Clark) surface;

(b) intersecting two Venuses (Venus model courtesy of the NYU Media Research Lab)

– Designing more robust algorithms that can better handle degeneracies and
numerical instabilities.

– Extending our method to piecewise smooth subdivision solids using Zorin’s
work as a basis [18].

– Developing a CAD system based on subdivision and CSG representation
by integrating a wide range of geometric computing algorithms, such as
offseting, blending, trimming and Boolean operations.
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Várady, Tamás 395

Wilson, Richard C. 34
Winkler, Joab R. 413
Wurm, Elmar 434

Xu, Guoliang 448
Xu, Zhiqiang 448

Zhu, Xu-Ping 458


	Frontmatter
	Free-Form Surface Construction in a Commercial CAD/CAM System
	Polyhedral Gauss Maps and Curvature Characterisation of Triangle Meshes
	Manifold Embedding of Graphs Using the Heat Kernel
	Detection of Surface Creases in Range Data
	Efficient Linear System Solvers for Mesh Processing
	Smoothing of Time-Optimal Feedrates for Cartesian CNC Machines
	Plausible 3D Colour Surface Completion Using Non-parametric Techniques
	Determining the Topology of Real Algebraic Surfaces
	Level Sets of Functions and Symmetry Sets of Surface Sections
	An Heuristic Analysis of the Classification of Bivariate Subdivision Schemes
	Global Curve Analysis via a Dimensionality Lifting Scheme
	Conversion of Dupin Cyclide Patches into Rational Biquadratic B\'{e}zier Form
	Multi-sided Attribute Based Modeling
	On Normals and Control Nets
	Line Subdivision
	Euclidean Voronoi Diagrams of 3D Spheres: Their Construction and Related Problems from Biochemistry
	The Importance of Polynomial Reproduction in Piecewise-Uniform Subdivision
	A Hybrid Approach to Extracting Tooth Models from CT Volumes
	B\'{e}zier Surfaces of Minimal Internal Energy
	Positivity-Preserving Scattered Data Interpolation
	Artifacts in Box-Spline Surfaces
	Spatial Pythagorean Hodograph Quintics and the Approximation of Pipe Surfaces
	Modelling Surface Normal Distribution Using the Azimuthal Equidistant Projection
	New Trends in Digital Shape Reconstruction
	Backward Errors and Condition Numbers of Regular and Singular Points on Algebraic Curves
	Approximate Rational Parameterization of Implicitly Defined Surfaces
	Convergence Analysis of Discrete Differential Geometry Operators over Surfaces
	A Marching Method for Computing Intersection Curves of Two Subdivision Solids
	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




